
Contact Anticipation for Physical Human–Robot Interaction with
Robotic Manipulators using Onboard Proximity Sensors

Caleb Escobedo∗, Matthew Strong, Mary West, Ander Aramburu, Alessandro Roncone

Abstract— In this paper, we present a framework that unites
obstacle avoidance and deliberate physical interaction for
robotic manipulators. As humans and robots begin to coexist
in work and household environments, pure collision avoidance
is insufficient, as human–robot contact is inevitable and, in
some situations, desired. Our work enables manipulators to
anticipate, detect, and act on contact. To achieve this, we
allow limited deviation from the robot’s original trajectory
through velocity reduction and motion restrictions. Then, if
contact occurs, a robot can detect it and maneuver based
on a novel dynamic contact thresholding algorithm. The core
contribution of this work is dynamic contact thresholding,
which allows a manipulator with onboard proximity sensors to
track nearby objects and reduce contact forces in anticipation
of a collision. Our framework elicits natural behavior during
physical human–robot interaction. We evaluate our system on a
variety of scenarios using the Franka Emika Panda robot arm;
collectively, our results demonstrate that our contribution is not
only able to avoid and react on contact, but also anticipate it.

I. INTRODUCTION

Robots have begun to transition from assembly lines,
where they are separated from humans, to environments
where human–robot interaction is inevitable [1]. With this
shift, research in physical human–robot interaction (pHRI)
has grown to allow robots to work with and around humans
on complex tasks. Safe pHRI requires robots to both avoid
harmful collisions and continue to work toward their main
task, whenever possible. Furthermore, robots must reliably
sense their surrounding environment and parse pertinent in-
formation in real-time to avoid potentially harmful collisions.

However, as HRI scenarios become commonplace, resort-
ing to pure collision avoidance is not sufficient—contact
is inevitable, and, at times, desirable. For example, when
humans work in close proximity, if contact needs to be made,
a single nudge or tap can cause a person to move away and
create more space for movement. We take a similar approach
in this work: when contact is made, the robot moves slightly
away to allow free movement near the contact area. Previous
work (e.g. [1], [2]) outline research done in both collision
avoidance and contact detection independently with no work
focusing on the transition between the two.

The first step to anticipating potential contact is to ac-
curately perceive objects in a robot’s nearby space. One
common solution consists of depth sensing cameras, which
are externally mounted and can perceive both humans and

All authors are with the Department of Computer Science, Univer-
sity of Colorado Boulder, 1111 Engineering Drive, Boulder, CO USA
name.surname@colorado.edu

* Corresponding author.

Fig. 1: Four sensor units (shown in color) detecting a human
hand near the robot’s surface. The bottom right image shows
a visualization of sensed objects (green spheres) based on
values from proximity sensors. The red portion of the robot
shows where contact is expected to be made (an interpolation
of the data from the proximity sensors).

objects in order to allow a robot to avoid unwanted colli-
sions. These systems are computationally expensive, prone
to occlusion, and low-bandwidth—they typically operate at
a maximum of 30 Hz and are thus unsuitable for highly dy-
namic environments and the presence of humans. While [3]
proposed solving the occlusion problem with multiple cam-
eras, their approach struggles to provide real-time avoidance.
When a robot interacts with the environment, there exists an
inverse relationship between the frequency of occlusions and
proximity to the interaction—that is, the closer a human and
robot operate, the more frequently occlusions occur. In all,
these limitations make it challenging for a robot to guarantee
safety in unstructured, dynamic environments. To mitigate
this issue, in this work we utilize custom-built artificial skin
prototypes equipped with proximity sensors to anticipate
collisions and increase sensitivity to contact. As detailed
in Fig. 1, multiple sensors are distributed along the robot’s
body, so as to enable a robot to perceive its surroundings in
real-time. With whole-body sensing, the robot can observe
otherwise visually occluded objects in its nearby space.

We posit that environmental information identified by
onboard proximity sensors enables new robot behaviors that
go beyond pure avoidance. With this in mind, we introduce a
framework outlined in Fig. 2 that allows a robot manipulator
to anticipate, detect, and act on contact: 1) when an object
approaches, we use whole-body sensing to track its position

with respect to the whole body of the robot; 2) potentially
harmful collisions are first avoided (by means of the kine-
matic redundancy of the robot) and then anticipated (in order
to reduce contact force); 3) when contact happens, small
external forces are recognized by the robot and used to alter
its trajectory in real time. To control the robot we formulate
our main task as a quadratic programming (QP) optimization
problem. With this formulation the robot avoids collision
with reduced velocities and relaxed avoidance constraints
to allow for intentional contact. Furthermore, we devise
a novel contact detection and reaction scheme to register
anomalies in noisy external force data and leverage onboard
sensors to increase sensitivity to contact. We experimentally
evaluate the proposed framework on a real robot in three
different scenarios. Altogether, our results demonstrate that
onboard sensing and dynamic contact thresholding can allow
for a smooth transition between avoidance and contact.
By leveraging these contributions, we are one step closer
to allowing humans and robots to safely operate in close
proximity.

This paper is organized as follows: Section II provides
background on environmental sensing and safety in HRI
through obstacle avoidance methods. Section III details
the entire system setup for this framework. Specifically,
Section III-F introduces the main contribution, dynamic
contact thresholding for contact anticipation and identifi-
cation. In Section IV, we outline our system evaluation
with static and dynamic environments, followed by re-
sults and discussion of our experimental scenarios in Sec-
tion V. A video demonstration of this work is available at
https://youtu.be/hg4LLBKKV6I.

II. RELATED WORK

Work in safe HRI has largely focused on complete obsta-
cle avoidance, leading to zero contact between manipulators
and humans. For example, [4], [5] demonstrates the use of
designated safety zones around a robot where the robot slows
down and eventually stops its movement entirely to avoid a
collision. Similarly, dynamic avoidance methods utilize a ex-
ternally mounted 3D camera to inform the robot’s movement
in dynamic environments [6]–[8]. [9] showcases avoidance
with on-board vision and 3D human skeleton estimation and
visualizes potential contact in the robot’s peripersonal space
[10]. Approaches in [11], [12] embrace the idea of working
in close proximity; however, these methods rely on external
sensing and maintain a safe distance away from the human
at all times, not permitting contact. Some recent works have
introduced on-board perception with proximity sensors (see
e.g. [13]–[15]). However, the proximity data is typically used
to solely inform avoidance [16], [17], and not the transition
to contact.

On the other hand, work on collision detection and re-
action has generally not integrated prior-to-contact sensing.
Several recent works focused on collision detection; none of
these implementations proactively perceived the environment
to anticipate contact [18]–[23]. The framework presented in
[24] is the most similar work ours, in that it allows for both

avoidance and contact—although it lacks a smooth transition
between the two.

III. METHOD

In this work, we present a framework to enable safe phys-
ical interaction between a human and robot manipulator. The
system is designed to allow for object avoidance, collision
anticipation, and deliberate human contact. In this section,
we detail each component of our framework, which consists
of perception, avoidance, contact detection, and post-contact
reaction as seen in Fig. 2.

A. Sensor Units (SUs) equipped with proximity sensing

Real-time physical human–robot interaction can be real-
ized via distributed whole-body sensing. To demonstrate this
hypothesis, we have developed a self-contained, low-cost,
low-power sensor unit (SU) capable of transmitting real-time
environmental data wirelessly. The SU (introduced in [15])
is designed to be a simple, modular element used to perform
prior-to-contact, nearby space perception. Each SU utilizes
an LSM6DS3 iNEMO 3D accelerometer and 3D gyroscope
inertial measurement unit (IMU) for automatic kinematic
calibration of the SUs and a VL53L1X time-of-flight (ToF)
sensor for distance measurements [15]. Distance information
is published at a rate of 50 Hz, with a maximum distance of
four meters from the sensor. The 33 mm by 36 mm board in
Fig. 1 is optimized for reduced area and affords the benefits
of modularity with a built-in ESP8266 microcontroller with
real-time wireless communication capabilities. Our SUs are
powered by a 3.7 V, 1000 mAh lithium-ion battery and
are configurable through onboard programming via a USB-
to-UART bridge. Each SU costs approximately $36 and is
operational for up to ten hours on a single charge with a
current consumption between 110–160 mA.

B. Identification of Obstacle Positions

With our custom sensor units, objects are perceived in the
robot’s immediate surroundings. To accomplish this, SUs are
distributed along the robot’s body and automatically located
through our previous work’s calibration algorithm in [15].
Each sensor unit’s proximity sensor is positioned so that its
distance measurement is parallel to the sensor unit’s z-axis
(i.e. normal to the robot’s surface). Then, the object’s position
hk ∈ R3 detected by sensor unit k as a function of proximity
reading dobs,k ∈ R can be computed as:

hk = O~rSUk
+ ORSUk

[
0 0 dobs,k

]T
, (1)

where SUk is the kth sensor unit, O~rSUk
∈ R3 is the position

of SUk with respect to robot base frame O, and ORSUk
∈

R3×3 is the rotational matrix of SUk with respect to the
robot base frame. The kth SU’s pose information is used to
compute an object position in Cartesian space given dobs,k.
Combined with knowledge of the robot’s state, collision
avoidance and contact thresholding are now achievable. This
section concludes the object detection block of Fig. 2.

https://youtu.be/hg4LLBKKV6I

Fig. 2: Diagram of the presented framework for contact anticipation, detection, and reaction. Each module represents a
distinct interaction from when an object enters the robot’s environment to when the repulsive velocity becomes zero, and
the initial trajectory is resumed.

C. Motion Control with Quadratic Programming

The main task and avoidance behaviors of the system are
implemented using a Cartesian velocity controller that solves
for joint velocities in a unified quadratic programming (QP)
expression. This optimization technique is used to leverage
the robot’s redundant degrees of freedom to avoid contact
while maintaining the desired main task.

To define the main task, first, let q̇ ∈ Rn represent the joint
velocities of a kinematically redundant robot manipulator
with n joints, and let the Cartesian velocity of the end-
effector (EE) be represented as ẋ ∈ Rm, where ẋ = J(q)q̇,
and J(q) ∈ Rm×n is the Jacobian of the robot. With this in
mind, the control equation is written as:

g(q̇) =
1

2
(ẋd − Jq̇)>(ẋd − Jq̇)+

µ

2
q̇>q̇

+
k

2
(q̇mid − q̇)>(q̇mid − q̇).

(2)

The first term in Eq. (2) represents the squared Cartesian
error between the current EE velocity ẋ and the desired task
velocity ẋd, whereas the second term is used as a damping
term to avoid singularities based on a robot manipulability
measure—we refer the reader to [25] for more details.
Additionally, a third term is added to the main task that
causes the robot to favor joint positions near the middle of
its joint limits. In this term, q̇mid consists of the desired
joint velocities that will move the joints towards their middle
positions (as determined from the joint operational range
from the robot’s manufacturer), and k is a scaling factor
used to weight the middle joint term. To calculate the q̇mid

value, we compute the difference in the current and middle
joint positions, then use that to determine joint velocities
that move towards their middle positions over t seconds.
Eq. (2) is then manipulated to conform with the quadratic
programming notation and restrictions inspired by [17]. The

previous formulation, which did not include the middle joint
limit term, allowed the manipulator to enter undesirable
configurations, and ultimately error states. In the following
two sections, we introduce two safety components: end-
effector (EE) velocity reduction and robot movement restric-
tions, which form the constraints of the QP optimization
formulation.
D. End-Effector Velocity Reduction

When a robot detects an obstacle, its EE velocity is
reduced in order to maximize safety and prepare for contact.
As a human approaches, the robot slows down execution
of its main task, which causes the corresponding avoidance
motion to be slower; this allows contact to easily be made.
Without any EE velocity reduction, purposeful contact is
both difficult and unnatural. The EE velocity is reduced as
follows: for each detected obstacle hk within a user-defined
max distance dmax, the norm of the distance to the robot
EE is taken, ||d||. We then take the smallest distance norm,
||dlowest||, to calculate the reduced EE velocity shown in the
following equation:

ẋd =
||dlowest||
dmax

ẋd. (3)

Above, ||dlowest||
dmax

produces a scaling term that reduces the
main task’s desired EE velocity, dependent on the distance
to the closest object. Objects detected beyond dmax from
the EE are discarded. Furthermore, to prevent jerky motions
induced by vanishing obstacle readings, we apply a linear
decay formula to simulate an obstacle slowly moving away
from the robot:

ẋd = ẋd ·
[
||dlowest||
dmax

+ (1− ||dlowest||
dmax

) · lobs
lmax

]
, (4)

where lobs is a term which starts at 0 and linearly increases to
lmax, and lmax is the value of where the original EE velocity

(a) Prior-to-Contact: A human enters the
robot’s workspace and is sensed by onboard
sensor units, triggering both velocity scaling
and avoidance behavior.

(b) Contact: When an object makes contact
with the robot, the external force is measured
and used to determine if it exceeds the
dynamically computed threshold.

(c) Post-Contact: After the external force
threshold exceeded, a reactive behavior
moves the robot in the direction and mag-
nitude of the applied force.

Fig. 3: A human physically interacting with a robot while in motion. This interaction is outlined in Section IV-C.

is completely restored. All user-defined values are located in
Table I.

E. Robot Movement Restrictions

Movement restrictions are applied by adding optimization
constraints to the QP main task formulation. With these
constraints, a robot moves around objects instead of directly
away from them. This is distinctly different than EE velocity
reduction; here, we restrict the velocity of dynamically
determined control points along the robot’s body closest to
each obstacle. A linear inequality constraint is constructed
that limits the motion ẋc,i ∈ R3, which is the Cartesian
velocity of the closest point to obstacle i on the manipulator.
This value is computed as ẋc,i = Jc,iq̇, where Jc,i is the
Jacobian of the closest point on the manipulator to the
obstacle. Next, d̂ is computed, which describes the direction
from the dynamic control point to the obstacle hi ∈ R3;
thus, the term d̂TJc,iq̇ describes the approach velocity of
the closest point on the robot towards the object. Finally, the
control point’s approach velocity towards the closest object
is constrained by a maximum approach velocity, ẋa, which
is determined based on the distance to the closest obstacle
hi. We compute ẋa as a smooth and continuous function.
Drawing inspiration from [8], our movement restrictions are
computed as follows:

Va =
Vmax

1 + e
β(2 d

dcrit
−1)

; (5)

Vb =
Vmax

1 + e
β(2

d−dcrit
dnotice−dcrit

−1)
; (6)

ẋa =

Va − Vmax : if d < dnotice and d < drepulse,

Vb : if d < dnotice and d ≥ drepulse,
Drop Restriction : otherwise.

(7)

Vmax is the maximum repulsive velocity, d is the distance
from the object to the closest point on the robot body,
drepulse is the distance where repulsive behavior begins.
dnotice is the distance at which we “notice” an obstacle and

start to impose movement restrictions. When an object is
close, a small repulsive velocity is applied — the robot will
only slowly avoid the object, and contact can be easily made
if desired. The parameters in the previous three equations can
be found in Table I.
F. Dynamic Contact Thresholding

In order to smoothly transition between prior-to-contact
and post-contact behaviors, a controller must determine if
external contact has been made, along with the direction
and magnitude of that contact. Three qualities are desired to
perform a seamless transition into post-contact behavior: a)
perfect external force data should not be required, b) contact
is more likely when an object is close to the robot, and c)
a robot moving close to an object should move slower than
normal and have increased sensitivity to interaction. To this
end, we propose a dynamic contact thresholding algorithm
that relies on obstacle readings and an estimation of the
robot’s external force to guarantee all three desired qualities.

To detect contact forces, the proposed algorithm does not
require a perfect estimation of the external force: the signal
that we utilize throughout this paper is the estimated external
Cartesian contact force, provided through the Franka Control
Interface [26]. This estimation is often volatile and far from
zero in all axes, especially when the robot is moving at high
velocities. However, our algorithm is robust to noisy data
and can be used to accurately determine if external contact
is made on the robot’s EE.

1) Average External Force Calculation: Given estimated
external force data, a sliding window is used to determine the
running average. Values are added to the window as detailed
below:

xt =

{
αxt + (1− α)xt−1 : if |xt − µt−1|> λσt−1,

xt : otherwise,
(8)

where xt is the data point appended to the window, α is the
influence value of a detected outlier, λ is a scaling factor
that is multiplied by the previous standard deviation σt−1,
and µt−1 is the previous mean value. The term λσt−1 is
used to determine if a given value is an outlier and should
be discounted when added to the moving average.

2) Contact Threshold Calculation: Contact thresholding
determines when contact is made, in what directions contact
was made, and the magnitude of the contact. To start, from
the external force window, we use the running average (µ)
as a base value for the dynamic external contact thresholds.
For each axis, we compute an independent contact threshold,
which is expressed as:

Contact Threshold =

{
Tu = µ+ Fb + Fσ − F –

obs,

Tl = µ− Fb − Fσ + F +
obs,

(9)

where Tu is the upper and Tl is the lower limit of the
contact threshold, and Fb is the base additional force required
from the mean to trigger contact behavior. Fσ increases the
external force necessary to trigger contact behavior and is
based on the external force signal’s standard deviation. This
value is computed as

Fσ = min(
σ

σmax
· Fstd, Fstd), (10)

where σmax is the max standard deviation. σ is the external
force window’s current standard deviation, and Fstd is the
max amount of force that is applied based on the σ value.
From the above equation, when the standard deviation of the
current window is low, Fσ will be small, which leads to a
threshold that is sensitive to external forces. As the robot
slows down, the external force data is less noisy, making
a slower robot more sensitive to contact. Next, F -

obs and
F +

obs are contact force reductions of the upper and lower
limits, respectively, based on the distance from an obstacle
to the robot’s EE. An object close to the robot EE reduces
the contact threshold because contact is likely when objects
are nearby. F -

obs and F +
obs are computed using the following

equation:

Fobs = (
dmax − d
dmax − dmin

) · Fd, (11)

where dmax is the distance from the robot’s EE where Fobs
begins to be applied, and dmin is the distance at which the
maximum force reduction is applied. Fd is the maximum
force reduction, and d is the minimum distance from the
robot’s EE to an object on the positive side of the robot for
F +

obs and the negative for F -
obs. For example, an object with

a greater y value than the current end-effector position will
lead to a reduction in the required force to trigger contact
behavior in the negative y direction.

If the newest value added to the running average exceeds
either the upper or lower threshold in any one or more of
the robot’s axes, then, a reactive behavior will occur. We
calculate the direction and overall external force applied to
the EE and use that information to apply a velocity in the
external force’s direction, as shown in

Fext = Freading − µ, ẋdes = C · Fext. (12)

Freading ∈ R3 describes the contact force from the sliding
window, and µ ∈ R3 is the mean force of the window,
which computes Fext ∈ R3. C ∈ R3×3 describes the
Cartesian compliance matrix that proportionally multiplies

Parameter Value Equations

dmax 0.8 m 3, 4, and 11
dmin 0.05 m 11
lmax 200 cycles @ 100Hz 4
Vmax 0.04 m/s 5, 6, and 7
drepulse 0.1 m 7
dcrit 0.1 m 5 and 6
dnotice 0.6 m 6 and 7
α 0.1 8
β -10 5 and 6
λ 0.75 8

Fstd 3 N 10
Fd 4 N 11
Fb 10 N 9
σmax 3 10

TABLE I: Table of user-defined parameters used in the
evaluation of the proposed method.

each component of the external force to output a desired
end-effector velocity, which temporarily overrides the main
task. We then linearly decay the velocity to zero over a
specified time period, similar to Eq. (4).

Ultimately, as a result of dynamic contact thresholding,
the three aforementioned interaction qualities are achieved:

1) Robustness to measurement noise: The controller
does not rely on perfect external force data; instead, it
is able to detect contact from noisy, external forces.

2) Anticipated contact from obstacles: As an obsta-
cle approaches the robot’s EE, the contact thresholds
decrease due to the Fobs value.

3) Increased contact sensitivity as velocity decreases:
For noisier data, we are less certain of contact being
made, which expands the threshold bounds. When a
robot slows down due to obstacles, reduced noise is
observed, and, in turn, a smaller Fσ value is added to
the thresholds.

IV. EXPERIMENT DESIGN

To validate the effectiveness of our algorithm, experiments
are conducted on a physical, 7-DoF Franka Emika Panda
robotic arm. A computer outfitted with a real time kernel
updates the commanded robot joint velocities at a rate of
100 Hz. The control loop acts on the most recently available
sensor unit data. We utilize a kinematic calibration algorithm
[15] and sensor units detailed in Section III-A to detect ob-
jects. Each sensor unit is outfitted with an IMU and proximity
sensor, the latter of which informs our avoidance and contact
detection algorithms. The experimental pipeline is developed
using C++ and ROS [27]: we initially implemented our
avoidance algorithms in the Gazebo simulator [28], then
transitioned to the real robot to test the entire framework.
We evaluate our framework in multiple scenarios, as detailed
in the next sections. Lastly, a list of explicit user-defined
parameters can be found in Table I.

Fig. 4: Robot EE moving in a circular path (blue circle);
when an object is detected (green dots), the end-effector
trajectory is modified to avoid collision (red) then gradu-
ally recovers (green). We demonstrate this behavior in two
interactions on opposite sides of the robot; the objects are
detected by independent proximity sensors.

A. Static Obstacle Collision

In the first scenario, the robot is placed near a large
static object and commanded to move towards it, causing
a collision. Proximity information is used to slow down the
robot and enable soft contact. Specifically, we position the
object in two positions around the robot to highlight the
ability of our system to reduce contact thresholds based on
object location. In the first position, the static object is placed
in the negative y direction of the end-effector; in the second
position, it is placed in the positive y direction. Two different
trajectories are used for each collision – in the first, the robot
moves in a Cartesian circle with a radius of 0.25 m, centered
at (0.5, 0, 0.25), and moving counter-clockwise in the y and z
direction. For the second, the robot moves in a line from (0.4,
0.5, 0.5) to (0.4, −0.5, 0.5). Both trajectories are commanded
to move at a max speed of 0.3 m/s when no objects are
nearby. Each of these trajectories are compared to that of
the same movement when not informed by onboard SUs to
anticipate contact and reduce movement speed.

B. Obstacle Avoidance

In this scenario, the robot is commanded to move in the
same circular trajectory as in Section IV-A, while a human
enters the robot’s path. When the human enters the scene,
they cause a slight deviation in the robot’s initial circular
trajectory. An example of this is illustrated in Fig. 3a, where
a human holds their hand up near the robot’s end-effector.

C. Dynamic Obstacle Collision

Finally, multiple dynamic obstacle collisions with a human
participant are made to demonstrate the full capabilities of
our system. Through this interaction, multiple sensors detect
objects and contact is made from different directions. After
contact has been made and the reactive behavior has been

completed, the robot continues along its original trajectory.
A depiction of this interaction can be seen in Fig. 3.

V. RESULTS AND DISCUSSION

A. Static Obstacle Collision

Fig. 7 illustrates the force reduction when proximity
sensors are used to anticipate a collision. In both the circular
and linear trajectories, the difference in the overall detected
contact force is approximately two times smaller when uti-
lizing proximity sensor data. The smaller forces demonstrate
that proximity detection for collision anticipation can make
close proximity interactions safer.

Prior to contact, the contact threshold value in the object’s
direction is reduced, as seen most prominently in the concave
red shaded region of the bottom graph in Fig. 7. This change
in threshold is due to object proximity and EE velocity scal-
ing, which are effectively able to soften the collision force
between the robot and object. Two independent contacts in
both the robot’s positive and negative y-axis are displayed
in Fig. 7. While we purposefully allow our robot to make
contact with a static object, the robot’s avoidance weights can
easily be altered to impose harsher movement restrictions
that completely avoid the object. Dependent on the task,
these parameters can be tuned to fit a certain use case.

B. Obstacle Avoidance

Fig. 4 shows the robot’s circular trajectory altered when an
object enters its nearby space environment and triggers an
avoidance. As an object appears in the robot’s operational
space, the controller scales the its velocity, and causes
a slight deviation in the circular path through movement
restrictions. Once far enough away from, or moving in
the opposite direction of the obstacle, the robot returns
to its original trajectory. We showcase this behavior using
multiple SUs mounted on opposite sides of the manipulator
to emphasize that the controller can simultaneously avoid
collisions and anticipate contact. Similar to Section V-A,
obstacle avoidance parameters can be tuned to increase or
decrease restrictive behavior.

C. Dynamic Obstacle Collision

The final evaluation highlights multiple dynamic contacts
with a human as outlined in Fig. 3. These interactions are
detailed in Fig. 5, three separate contacts are made with
the manipulator. The robot’s movement is only affected by
obstacles with distance less than a predetermined threshold
of 0.5 m (the diameter of its circular trajectory), seen as
a black dotted line. When the distance condition is met, the
robot’s velocity is reduced, as seen in the blue shaded region
of the bottom graph in Fig. 5. In addition to the robot slowing
down, the contact thresholds become more restrictive when
objects are nearby; this is most clearly shown in Fig. 6,
which is a higher resolution view of the third interaction of
Fig. 5. During the interaction in Fig. 6, two proximity sensors
are activated on opposite sides of the manipulator, and this
leads to a reduction of both upper and lower thresholds, as
seen in the red shaded region. After slowing down, contact

Fig. 5: Three components of a continuous human–robot interaction over 30 seconds: during this time, three distinct contact
are made from multiple directions. Top graph: depth values of seven proximity sensors placed along the robot body and EE,
with the activation threshold as a dotted black line. Middle graph: external force exerted on the robot EE in the y-axis with
the dynamic thresholds shown above and below. Bottom graph: The manipulator’s EE velocity along the y-axis.

Fig. 6: Top graph: distance values from six proximity sensors
mounted on the robot body and EE during the interaction
outlined in Section IV-C. The region of interest label denotes
the region at which sensed distances are meaningful for our
algorithm. Bottom graph: external force exerted on the robot
EE in the y direction and associated contact thresholds above
and below.

with the robot is shown in the red shaded regions of Fig. 5
from multiple directions. The direction and magnitude of
the applied external force directly determines the direction
and magnitude of the EE velocity when repulsive behavior
is triggered. We can see the resulting velocity spikes from
contact in the bottom graph of Fig. 5 in the red shaded
regions. Through this interaction, we illustrate that our
system is able to anticipate and react to contact with dynamic
objects within its environment from multiple directions. In
fact, without our thresholding behavior, such soft contact
would not be discernible and not allow a human to easily

Fig. 7: Force difference for contact detection, in the y-
direction, between our method with proximity sensing (red
line) and without proximity sensing (blue line). The shaded
regions represent the thresholds for contact. In the top graph,
the robot is moving in a circular trajectory, and in the bottom,
a horizontal line, before contact is made.

interact in close proximity. The implicit anticipation opens a
new realm of behaviors for true human–robot collaboration
in close proximity, where a robot can dynamically adapt to
its changing environment.

VI. CONCLUSIONS

In this work, we introduce a framework for contact an-
ticipation during physical human–robot interaction. Through
relaxed avoidance constraints in a quadratic programming
control formulation, combined with a novel dynamic thresh-
olding algorithm, our work addresses an unexplored area be-
tween avoidance and contact. Our experiments demonstrate
the system’s abilities in multiple scenarios with both static
and dynamic interactions.

With respect to future work, we plan to develop a truly
collaborative system through both hardware and software.
Our current sensor units are outfitted with IMUs; while we
used the IMUs for our calibration, they were not utilized
in this framework. IMU data can be leveraged to increase
sensitivity to external forces acting on the robot. The next
iteration of sensor units will include tactile sensors, allowing
for localization of contact from external forces. Another
promising direction for future research is a parametric anal-
ysis of the proposed algorithm, where we can explore the
sensitivity of our framework’s parameters. Additionally, we
plan to explore the effectiveness of our perception as we add
more sensor units along a robot’s exterior and combine this
information with external vision to gain a holistic view of the
robot’s environment. As we move in these future directions,
we also plan to explore the differences between simulation
and real life to mitigate the challenges of deployment on real
robots. Ultimately, we will continue to improve our current
sensor units and achieve whole–body awareness, effectively
bringing the paradigms of avoidance and contact together for
physical human–robot interaction.

REFERENCES

[1] V. Villani, F. Pini, F. Leali, and C. Secchi, “Survey on human–robot
collaboration in industrial settings: Safety, intuitive interfaces and
applications,” Mechatronics, vol. 55, 2018.

[2] P. A. Lasota, T. Fong, J. A. Shah, et al., A survey of methods for safe
human-robot interaction. Now Publishers, 2017.

[3] M. Melchiorre, L. S. Scimmi, S. P. Pastorelli, and S. Mauro, “Collison
avoidance using point cloud data fusion from multiple depth sensors:
a practical approach,” in 2019 23rd International Conference on
Mechatronics Technology (ICMT). IEEE, 2019.

[4] C. Vogel, C. Walter, and N. Elkmann, “A projection-based sensor sys-
tem for safe physical human-robot collaboration,” in 2013 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE,
2013.

[5] P. Svarny, M. Tesar, J. K. Behrens, and M. Hoffmann, “Safe
physical hri: Toward a unified treatment of speed and separation
monitoring together with power and force limiting,” 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
Nov 2019. [Online]. Available: http://dx.doi.org/10.1109/IROS40897.
2019.8968463

[6] A. Tulbure and O. Khatib, “Closing the loop: Real-time perception
and control for robust collision avoidance with occluded obstacles,”
in 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2020.

[7] H. Nascimento, M. Mujica, and M. Benoussaad, “Collision avoidance
in human-robot interaction using Kinect vision system combined with
robot’s model and data,” in 2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2020.

[8] F. Flacco, T. Kröger, A. De Luca, and O. Khatib, “A depth space
approach to human-robot collision avoidance,” in 2012 IEEE Interna-
tional Conference on Robotics and Automation. IEEE, 2012.

[9] D. H. P. Nguyen, M. Hoffmann, A. Roncone, U. Pattacini, and
G. Metta, “Compact real-time avoidance on a humanoid robot for
human-robot interaction,” in Proceedings of the 2018 ACM/IEEE
International Conference on Human-Robot Interaction, 2018.

[10] A. Roncone, M. Hoffmann, U. Pattacini, and G. Metta, “Learning
peripersonal space representation through artificial skin for avoidance
and reaching with whole body surface,” in 2015 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). IEEE.

[11] A. M. Zanchettin, N. M. Ceriani, P. Rocco, H. Ding, and B. Matthias,
“Safety in human-robot collaborative manufacturing environments:
Metrics and control,” IEEE Transactions on Automation Science and
Engineering, vol. 13, no. 2, 2015.

[12] P. A. Lasota, G. F. Rossano, and J. A. Shah, “Toward safe close-
proximity human-robot interaction with standard industrial robots,”
in 2014 IEEE International Conference on Automation Science and
Engineering (CASE). IEEE, 2014.

[13] Y. Ding, F. Wilhelm, L. Faulhammer, and U. Thomas, “With proximity
servoing towards safe human-robot-interaction,” in 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2019.

[14] P. Mittendorfer, E. Yoshida, and G. Cheng, “Realizing whole-body
tactile interactions with a self-organizing, multi-modal artificial skin
on a humanoid robot,” Advanced Robotics, vol. 29, no. 1, 2015.

[15] K. Watanabe, M. Strong, M. West, C. Escobedo, A. Aramburu,
K. Chaitanya, and A. Roncone, “Self-contained kinematic calibration
of a novel whole-body artificial skin for collaborative robotics,” in
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2021.

[16] G. B. Avanzini, N. M. Ceriani, A. M. Zanchettin, P. Rocco, and
L. Bascetta, “Safety control of industrial robots based on a distributed
distance sensor,” IEEE Transactions on Control Systems Technology,
vol. 22, no. 6, 2014.

[17] Y. Ding and U. Thomas, “Collision avoidance with proximity servoing
for redundant serial robot manipulators,” in 2020 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2020.

[18] M. Geravand, F. Flacco, and A. De Luca, “Human-robot physical
interaction and collaboration using an industrial robot with a closed
control architecture,” in 2013 IEEE International Conference on
Robotics and Automation. IEEE, 2013.

[19] E. Mariotti, E. Magrini, and A. De Luca, “Admittance control for
human-robot interaction using an industrial robot equipped with a f/t
sensor,” in 2019 International Conference on Robotics and Automation
(ICRA). IEEE, 2019.

[20] E. Magrini and A. De Luca, “Hybrid force/velocity control for physical
human-robot collaboration tasks,” in 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2016.

[21] E. Magrini, F. Flacco, and A. De Luca, “Estimation of contact
forces using a virtual force sensor,” in 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, 2014.

[22] S. Haddadin, A. De Luca, and A. Albu-Schäffer, “Robot collisions: A
survey on detection, isolation, and identification,” IEEE Transactions
on Robotics, vol. 33, no. 6, 2017.

[23] S. Haddadin, A. Albu-Schaffer, A. De Luca, and G. Hirzinger,
“Collision detection and reaction: A contribution to safe physical
human-robot interaction,” in 2008 IEEE/RSJ International Conference
on Intelligent Robots and Systems. IEEE, 2008.

[24] A. De Luca and F. Flacco, “Integrated control for phri: Collision
avoidance, detection, reaction and collaboration,” in 2012 4th IEEE
RAS & EMBS International Conference on Biomedical Robotics and
Biomechatronics (BioRob). IEEE, 2012.

[25] Y. Nakamura and H. Hanafusa, “Inverse kinematic solutions with
singularity robustness for robot manipulator control,” 1986.

[26] “Franka control interface documentation.” [Online]. Available:
https://frankaemika.github.io/docs/

[27] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2.
Kobe, Japan, 2009.

[28] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (IEEE Cat.
No.04CH37566), vol. 3, 2004.

http://dx.doi.org/10.1109/IROS40897.2019.8968463
http://dx.doi.org/10.1109/IROS40897.2019.8968463
https://frankaemika.github.io/docs/

	Introduction
	Related Work
	Method
	Sensor Units (SUs) equipped with proximity sensing
	Identification of Obstacle Positions
	Motion Control with Quadratic Programming
	End-Effector Velocity Reduction
	Robot Movement Restrictions
	Dynamic Contact Thresholding
	Average External Force Calculation
	Contact Threshold Calculation

	Experiment Design
	Static Obstacle Collision
	Obstacle Avoidance
	Dynamic Obstacle Collision

	Results and Discussion
	Static Obstacle Collision
	Obstacle Avoidance
	Dynamic Obstacle Collision

	Conclusions
	References

