
Volumetric Data Fusion of External Depth and Onboard Proximity
Data For Occluded Space Reduction

Matthew Strong∗, Caleb Escobedo∗, and Alessandro Roncone

Abstract— In this work, we present a method for a proba-
bilistic fusion of external depth and onboard proximity data to
form a volumetric 3-D map of a robot’s environment. We extend
the Octomap framework to update a representation of the area
around the robot, dependent on each sensor’s optimal range of
operation. Areas otherwise occluded from an external view are
sensed with onboard sensors to construct a more comprehensive
map of a robot’s nearby space. Our simulated results show that
a more accurate map with less occlusions can be generated by
fusing external depth and onboard proximity data.

I. INTRODUCTION

Roboticists have begun to investigate robot capabilities in
cluttered environments where obstacles can be occluded from
view of external depth sensors. In order for robots to plan
safe trajectories, the robot motion planner requires an accu-
rate spatial depiction of the robot’s workspace. Traditionally,
object positions surrounding the robot are estimated using
depth data from externally mounted cameras, such as the
Microsoft Kinect. However, the depth data provided from
externally mounted cameras is prone to occlusions when
objects are placed between the camera and the robot itself,
as noted in [1]. Occlusions lead to an incomplete view of the
robot’s workspace that make it difficult to plan safe paths.
To gain information about areas otherwise occluded from
external depth sensors, [1] highlighted the benefits of using
distance sensors placed on the robot’s body.

Previous work using onboard proximity sensors has fo-
cused on utilizing information immediately for contact avoid-
ance or anticipation, as shown in [2], [3]. External depth
cameras have also been utilized for contact avoidance [4],
and are frequently used to map a robot’s surrounding space.
To add additionally utility to data measured by onboard
proximity sensors, in this paper, we fuse external depth and
onboard proximity data to create a volumetric representation
of the robot’s environment. We extend the Octomap [5]
framework to include onboard proximity sensor units along
with external depth data. Our results demonstrate that other-
wise occluded areas can be mapped using onboard proximity
sensors.

II. MULTI-MODAL OCTOMAP GENERATION

In our simulated environment, a depth camera is placed
to give a third person view of the robot’s workspace, and

∗Matthew Strong and Caleb Escobedo contributed equally to this
work. All authors are with the Department of Computer Science, Uni-
versity of Colorado Boulder, 1111 Engineering Drive, Boulder, CO USA
name.surname@colorado.edu

proximity sensors are placed on the robot’s end-effector.
We then process the information obtained from each sensor
to compute the position of objects near the robot. Then,
extending the Octomap framework, we modify our map using
a novel probabilistic update, dependent on which sensor
detected each object.

A. Object Detection

1) Onboard Proximity Sensors: We position each proxim-
ity sensor so that its distance measurement is aligned with
the sensor’s z-axis. Accordingly, the position of an object
hk ∈ R3 detected by sensor unit k can be computed as:

hk = O~rPSk
+ ORPSk

[
0 0 dobs,k

]T
, (1)

where PSk is the kth proximity sensor, and O~rPSk
∈ R3 is

the position of PSk with respect to the robot’s base frame O.
ORPSk

∈ R3×3 is the rotational matrix of PSk with respect
to the robot’s base frame. dobs,k is the sensed distance from
the sensor to the object.

2) Depth Camera: The computation of an object’s posi-
tion for a depth camera is given by:

h = O~rDC + ORDC

[
px py pz

]T
, (2)

where DC is the depth camera, and O~rDC ∈ R3 is the
position of DC with respect to robot’s base frame. ORDC ∈
R3×3 is the rotational matrix of DC with respect to the
robot’s base frame. px, py, pz composes the 3-D position of
a detected point in the sensor’s frame.

B. Volumetric Mapping

Octomap is an occupancy grid mapping framework based
on octrees, which generates a probabilistic occupancy esti-
mation given noisy depth data [5]. It explicitly calculates oc-
cupied and free space probabilities. As sensor measurements
are read, they are used to update the occupation probability
of nodes within the octree. P (n|z1:t), the probability of node
n being occupied conditioned on z1:t, depends on the current
measurement zt, a prior probability P (n), and the previous
probability estimate P (n|z1:t−1). We refer interested readers
to Equation 1 in [5] for more information. To reduce com-
putation time, Octomap uses the log-odds of P (n) to update
a node’s occupation probability. The log-odds is expressed
as:

L(n) = log

[
P (n)

1− P (n)

]
(3)

4th Workshop on Proximity Perception
2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2021), Prague, Czech Republic
Published under the Creative Commons license (CC BY-NC-ND) at KITopen

(a) Gazebo Simulation (b) Depth Camera

(c) Onboard Proximity (d) Both Sensors

(e) Ground Truth Front (f) Ground Truth Back

Fig. 1: Image (a) shows our simulated Gazebo environment
with multiple objects occluded from the view of a depth
camera, circled in green. Images (b), (c), and (d) show an
Octomap representation when using specific sensor data. The
full scene used to evaluate our method is shown in (e) and
(f).

The log-odds of node n being occupied conditioned on
sensors’ measurements from time 1 to t can be expressed
as:

L(n|z1:t) = L(n|z1:t−1) + L(n|zt), (4)

where L(n|z1:t−1) is the prior log-odds and L(n|zt) is
the log-odds of a node conditioned on the current sensor
measurement [5]. Furthermore, the probability of a node
being occupied based on the current sensor data is expressed
in log-odds terms as:

P (n|zt) = 1− 1

1 + exp(L(n|zt))
, (5)

In our work, we modify the log-odds update notation to
allow for multiple proximity sensors along with an external
depth camera. Our log-odds update at time t can then be

written as:

L(n|zt) = L(n|DCt) +

M∑
k=1

L(n|PSk,t), (6)

where M is the amount of onboard proximity sensors.
L(n|PSk,t) is the log-odds of node n given data from
proximity sensor k at time t, and L(n|DCt) is the log-odds
given data from depth camera DC. L(n|PSk,t) is computed
as:

L(n|PSk,t) =


0 : dPSk,t

< 0.04,

−0.07dPSk,t
+ 1 : dPSk,t

≥ 0.04,

−0.4 : if beam traverses through node,
(7)

where dPSk,t
is the distance from proximity sensor k at

time t to a sensed object that is in node n. If a beam (a
ray of points connecting the sensor to the detected object)
passes through a node, which means that there is no detected
object in that specific node, then a negative log-odds update
is received (here, −0.4 corresponds to a probability of 0.4
of node n being occupied). L(n|DCt) is:

L(n|DCt) =


0 : dDCt

≤ 0.5,

−0.1dDCt
+ 1 : dDCt

≥ 0.5,

−0.4 : if beam traverses node,
(8)

where dDCt
is the distance from the depth camera to the

sensed object.
For proximity data, we base our formulation on the official

datasheet of the VL53L1X ToF sensor, which is the sensor
we used in our previous real world experiments [3]. Its
minimum range is 4 cm. The ranging error for the VL53L1X
ToF sensor in different test cases of varying distances is 2 cm;
the data sheet also shows that as the range of sensed data
increases, so does the standard deviation of measurements
[6]. With this information taken into account, we linearly
decay the log-odds update value of proximity sensor data.

The depth camera log-odds value at a distance of 0.5m
and below is 0 (which does not change the probability of a
node being occupied) because the operational range of the
depth camera starts from 0.5m [7]. At distances greater than
0.5m, it has been shown that the ranging error (accuracy
and precision) of ToF (Time-of-Flight) depth cameras slowly
increases over time; hence we apply a linear decay on the
log-odds value of a detected node from the depth camera
[8]. We model our depth camera based on the Kinect-V2; its
error is 3cm at 2m [8].

We graph the corresponding probabilities from our log-
odds updates in fig. 2. The probability of a node being
occupied with the depth camera from 0.5m to 4m decreases
from 0.73 to 0.68, and the occupation probability with a
proximity sensor from 0.04m to 4m decreases from 0.72 to
0.64. These values are centered around the optimal constant
update value introduced in the original Octomap paper [5].

4th Workshop on Proximity Perception
2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2021), Prague, Czech Republic
Published under the Creative Commons license (CC BY-NC-ND) at KITopen

These values were set based on both sensor’s respective data
sheets and research analysis of performance from [8], [7].

Fig. 2: Probabilities of a node being occupied for proximity
sensor and depth camera measurements based on distance,
computed from our log-odds update.

III. RESULTS

1) Setup: To evaluate our method, we conduct experi-
ments in the Gazebo simulator using C++ and ROS with a
simulated, 7-DoF Franka Emika Panda robotic manipulator.
We simulate 34 proximity sensors, placed on the robot
end-effector, and an externally mounted depth camera. We
publish batched proximity data at a rate of 30 Hz with 2
cm noise, while the depth camera data is published at a rate
of 10 Hz with 3 cm noise. Noise is based on sensor error
introduced in section II-B. Our results compare the amount
of free and occupied space generated from proximity sensor
data, depth camera data, and both data streams fused, as
displayed in fig. 1 with a ground truth map. Our simulated
environment is shown in fig. 1a. During simulation, the robot
moves in a circular path with a radius of 0.3 m at a speed
of 0.188 m/s.

Sensors Used Occupied Free Missed Incorrect
Depth Camera 970 27510 3523 299

Proximity 587 47847 3697 26
Proximity + Depth 1430 66697 2469 317

TABLE I: This table shows a comparison of our generate
maps from a specific sensor type to a ground truth map
shown in fig. 1e. Occupied: A node in space is occupied
in both ground truth and generated map. Free: Node is free
in both ground truth and generated map. Missed: Node is
occupied in ground truth but does not exist in the generated
map. Incorrect: Node is not occupied in ground truth, but
is occupied in the generated map.

A. Volumetric Comparison

Our simulated environment can be seen in fig. 1a with
two objects purposefully occluded by large shelves placed
between the robot and the camera. The cone in fig. 1a is
only sensed by the proximity sensors, as seen in fig. 1c.
The onboard proximity sensors’ information supplements the

depth camera data to give a representation of the shelf as two
distinct open compartments.

We compare our maps generated shown in fig. 1 to a
ground truth mapping created with a manually controlled
depth camera with no noise as shown in fig. 1e and fig. 1f.
In our evaluation, we compare the ground truth octree with
a constructed octree, both of which have the same minimum
octree resolution of 0.04m. From table I, the proximity and
depth map has 1430 occupied nodes that matched the ground
truth, as compared to 970 for the depth camera and 587
for proximity. The amount of correctly free nodes is also
significantly higher for the proximity and depth map. Our
method reduces the amount of missed occupied cells, while
only slightly increasing the amount of incorrect nodes.

IV. CONCLUSION

In this work, we introduced an adaptation of the Octomap
framework that fuses external depth and proximity sensor
data for probabilistic, volumetric map generation. Our results
show that fusing both data streams into a cohesive map
represents the environment in more detail then either inde-
pendently. With respect to future work, we aim to implement
this method on a real robot with real sensors, which we
have worked with in the past for contact anticipation and
avoidance [3]. Lastly, we plan to expand our simulation
to accurately represent the VL53L1X ToF proximity sensor
which has a viewing angle of approximately 27° in a cone
shape. As objects are sensed further away form a given
sensor, the uncertainly in object position increases, because
multiple objects of different depth can be sensed from the
same sensor position. These specific sensor characteristics
must be addressed in order to generate an accurate map of
a robot’s environment in real life.

REFERENCES

[1] S. E. Navarro, S. Mühlbacher-Karrer, H. Alagi, H. Zangl, K. Koyama,
B. Hein, C. Duriez, and J. Smith, “Proximity perception in human-
centered robotics: A survey on sensing systems and applications,” IEEE
Transactions on Robotics, 2021.

[2] Y. Ding and U. Thomas, “Improving safety and accuracy of impedance
controlled robot manipulators with proximity perception and proactive
impact reactions,” in 2021 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2021.

[3] C. Escobedo, M. Strong, M. West, A. Aramburu, and A. Roncone,
“Contact anticipation for physical human–robot interaction with robotic
manipulators using onboard proximity sensors,” in IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), 2021.

[4] F. Flacco, T. Kröger, A. De Luca, and O. Khatib, “A depth space ap-
proach to human-robot collision avoidance,” in 2012 IEEE International
Conference on Robotics and Automation. IEEE, 2012.

[5] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard,
“Octomap: An efficient probabilistic 3d mapping framework based on
octrees,” Autonomous robots, vol. 34, no. 3, pp. 189–206, 2013.

[6] A new generation, long distance ranging Time-of-Flight sensor based
on ST’s FlightSense™ technology, STmicroelectronics, 11 2018, rev. 3.

[7] M. Tölgyessy, M. Dekan, L. Chovanec, and P. Hubinskỳ, “Evaluation
of the azure kinect and its comparison to kinect v1 and kinect v2,”
Sensors, vol. 21, no. 2, p. 413, 2021.

[8] Y. He, B. Liang, Y. Zou, J. He, and J. Yang, “Depth errors analysis
and correction for time-of-flight (tof) cameras,” Sensors, vol. 17, no. 1,
p. 92, 2017.

4th Workshop on Proximity Perception
2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2021), Prague, Czech Republic
Published under the Creative Commons license (CC BY-NC-ND) at KITopen

