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Abstract— In this paper, we present an accelerometer-based
kinematic calibration algorithm to accurately estimate the pose
of multiple sensor units distributed along a robot body. Our
approach is self-contained, can be used on any robot provided
with a Denavit-Hartenberg kinematic model, and on any skin
equipped with Inertial Measurement Units (IMUs). To validate
the proposed method, we first conduct extensive experimenta-
tion in simulation and demonstrate a sub-cm positional error
from ground truth data—an improvement of six times with
respect to prior work; subsequently, we then perform a real-
world evaluation on a seven degrees-of-freedom collaborative
platform. For this purpose, we additionally introduce a novel
design for a stand-alone artificial skin equipped with an
IMU for use with the proposed algorithm and a proximity
sensor for sensing distance to nearby objects. In conclusion,
in this work, we demonstrate seamless integration between a
novel hardware design, an accurate calibration method, and
preliminary work on applications: the high positional accuracy
effectively enables to locate distributed proximity data and
allows for a distributed avoidance controller to safely avoid
obstacles and people without the need of additional sensing.

I. INTRODUCTION

In recent years, robots have started to leave the structured
environments characteristic of factories and laboratories, and
they have progressively transitioned to operating with and
around people. However, modern robotic manipulators are
limited in their ability to operate in close proximity with
humans because they currently lack the necessary sensing ca-
pabilities for whole-body perception of humans and obstacles
in their immediate surroundings. Traditionally, collaborative
robots designed to work with people (such as the Franka
Panda robot in Fig. 1) resort to either external, sparse,
and high-resolution sensing (e.g. RGB-D cameras [1] which
have low bandwidth and are prone to occlusions) or on-
board, low-resolution, contact-based perception (through e.g.
wrist-mounted force/torque sensors, torque sensors on the
robot’s joints [2], or a combination of the two); the rest
of the body is rarely taken into account. Under this per-
spective, distributed artificial skins are a promising solution
to effectively enable whole-body awareness of contact and
information-rich perception of the nearby space, with the
goal of robustly perceiving humans and safely operating
in close proximity with them [3]–[9]. However, existing
artificial skin technologies are limited by the following: i)
they often demand a considerable amount of time to design,
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Fig. 1: We present an algorithm that autonomously calibrates
the poses of multiple units of a novel artificial skin prototype
mounted on a robot; such poses can then be used to precisely
locate sensor data in the robot’s frame of reference. a)
example of trajectory redirecting for human-aware robot
safety: as a person approaches the robot, proximity sensors
are activated and the robot successfully avoids the human;
b) close-up of the self-contained skin prototype used for
validation of the algorithm.

set up, and deploy the hardware; ii) they are usually tailored
to a specific platform and cannot easily be ported to different
robots; iii) they generally focus on touch/pressure sensing,
and they consequently do not enable perception in the nearby
space of a robot; iv) they require manual, precise, and time-
consuming installation and calibration. Collectively, these
limitations demand a significant overhead, with the net result
of limiting research and progress in the field.

In this work, we aim at mitigating these drawbacks by
presenting a comprehensive framework for perception, cali-
bration, and robot operation in close proximity with humans.
First, we present an accurate, automated, and self-contained
algorithm for kinematic calibration [10], which contributes to
addressing issue iv). For the purposes of this paper, we define
kinematic calibration as the problem of locating the six-
dimensional pose (i.e. position and orientation) of multiple
skin sensors distributed along a robot’s body. Our method
does not rely on the use of external metrology systems
(such as the laser pointers detailed in [11], [12]), and it
exclusively resorts to accelerometer data as read from Inertial
Measurement Unit (IMU) sensors conveniently located on
the robot skin. Secondly, we introduce a novel design for
a wireless artificial skin that is self-contained, self-powered
and capable of proximity and inertial sensing (cf. Fig. 1).



As detailed in Section III, our open-source design is robot-
independent, it can be readily utilized on a variety of different
applications, and it focuses on proximity sensing as the most
fundamental feature for a robot to operate around people—
thus contributing to issues i), ii), and iii).

The theoretical contribution of the algorithm detailed in
Section IV consists of two main components, which collec-
tively result in improved convergence and greater accuracy
if compared to prior work. First, we introduce a novel for-
mulation of the optimization problem which is now divided
in two distinct steps—orientation estimation and subsequent
position estimation. Second, acceleration-based calibration of
the skin is simplified without loss of accuracy to further
accelerate convergence. The proposed method is initially
evaluated in simulation and subsequently validated on a
real robot platform (see Section V); collectively, our results
demonstrate that our contribution significantly outperforms
existing state-of-the-art approaches in terms of convergence
accuracy, thus bringing us one step closer to a future of
plug-and-play and multi-functional sensing. Finally, the ef-
fectiveness of our holistic approach is demonstrated with
a minimal obstacle avoidance controller (similarly to [1],
[4], [8], [13]–[17]) in which calibrated proximity readings
are used to safely operate around people (Section VI). Our
prototype interaction effectively demonstrates how on-board,
distributed, high-bandwidth proximity sensing constitutes
a promising direction for future work in close-proximity
Human-Robot Collaboration.

II. BACKGROUND AND RELATED WORK

In the following, we briefly detail prior research relevant
to the purposes of this work, and we clarify how our work
is positioned with respect to prior efforts.

A. Kinematic calibration: Calibration of a robot’s kine-
matic chain is a core problem for industrial and collaborative
robotics, as precise modeling of a robot’s kinematics and
dynamics has direct impact on performance and operation of
a robot manipulator. For this reason, kinematic calibration
has been extensively investigated in past decades, and a
number of techniques have been devised for both open-
loop and closed-loop approaches (please refer to [18] for an
overview). However, these works are different in nature from
the proposed method in that they are improving an already
available kinematic model—which is a significant prior that
facilitates convergence of the optimization and accuracy of
the results. In our work, we are concerned with kinematically
calibrating artificial skin sensors that are randomly placed
on a robot’s surface, i.e. without any prior information to
rely upon. Of particular relevance to this paper is the work
performed in the area of calibration of robot kinematics
based on IMU data [19], which overlaps with the work in
human body estimation for motion capture, e.g. [20], [21].
However, in addition to dealing with a different problem
(calibration of an existing kinematic model vs calibration of a
free-moving skin unit), existing approaches typically rely on
sensor fusion techniques that integrate information coming
from a variety of different sensors (e.g. magnetometers, GPS,

ultra-wideband radio, cameras, and more). In our work, we
exclusively employ accelerometer data as we are constrained
by the compact hardware prototype we have introduced.

B. Artificial skins for robotics: In recent years, there has
been steady and significant progress on developing technolo-
gies for distributed artificial sensing in robotics. While the
majority of prior work focuses on pressure and touch sensing
for robotic grippers to enhance manipulation and grasping
(e.g. [16], [17], [22]), a parallel line of research has aimed
attention at whole-body, dense coverage of a robot’s surface
[5]–[7], [23]. Our paper capitalizes on this body of work,
and improves it in two directions: i) by focusing on prior-
to-contact perception of the nearby space of a robot rather
than on-contact, touch-based perception (see also [23], [24]),
which is an under-explored area of interest; ii) by developing
a plug-and-play, self-contained hardware element that can be
replicated at scale and utilized to cover a variety of different
robots with minimal overhead. Our work is based on the
belief that artificial skins should not be limited to few sensing
capabilities but rather house a variety of features. To our
knowledge, this is the first attempt at providing such degree
of modularity and flexibility.

C. Kinematic calibration of artificial skins: To realize
safe, robust and reliable obstacle detection, it is of paramount
importance to precisely locate the relative pose of each
sensor with respect to the kinematic chain of the robot.
As mentioned in Section II.A, this process is not to be
confused with calibration of a robot’s kinematic model, as the
sensors to be calibrated can be placed anywhere on the robot
body. Traditionally, kinematic calibration of artificial skin is
a procedure that is manually performed by the robot operator,
and only recent work has started to automate it. [25], [26]
presented a method where the iCub humanoid robot [7]
performed “self-touch” actions on its robotic skin, allowing
for an observation of the 3D position of the end-effector
and computation of its Denavit-Hartenberg [DH] parameters
[27]. While this approach is autonomous and does not rely
on external measurements, the iCub’s bi-manual self-touch
capabilities would not be possible on commercially-available
collaborative manipulators due a lower number of Degrees
of Freedom (DoFs) and consequently reduced manipulability.
Of more generalizability is the work detailed in [28], where
tactile sensors and kinematic information of the robot arm
were estimated using acceleration data collected from a set
of IMUs mounted within the skin. However, while this work
serves as reference for the method detailed in this paper, its
average real-world positional error renders it ineffective in
practice—as detailed in Section VI.

III. NOVEL DESIGN OF ARTIFICIAL SKIN

In the following, we introduce a modular design for a
whole-body artificial skin with dynamic sensing capabilities.
We define a skin unit (SU) as the most minimal, atomic skin
element needed to perform autonomous kinematic calibra-
tion and nearby-space perception; for the purposes of the
algorithm detailed in Section IV, the SU shown in Fig. 1b
is composed of an inertial measurement unit (IMU) and a



proximity sensor; contact sensing can be achieved through
a combination of accelerometer and gyroscope data. The
proposed skin is characterized by off-the-shelf sensors that
enable low overall cost (approximately $36) and low power
consumption (with an operational range of 110 − 160mA),
which effectively allows for a self-contained package to ease
prototyping and deployment. The SUs used in this work (see
Fig. 5 for reference) operate with external 100mAh batteries
and can operate continuously for up to 10 hours.

Sensor Selection and Electronics Considerations: The
33 × 36mm SU prototype detailed in Fig. 1b is a stand-
alone design equipped with a WiFi-enabled ESP8266 micro-
controller, a USB-to-UART bridge for programming, visual-
based hardware debugging, and several system status LEDs.
The SU is a 2-layer stack-up rigid PCB fabricated on 0.15mm
Kingboard copper clad laminate 175TgFR4 substrate, and
it is powered by means of an integrated Lithium-Polymer
battery (for an operation time of 7 to 10 hours on a
single charge). We selected an LSM6DS3 iNEMO inertial
measurement unit, which is characterized by a full-scale
acceleration range of ±2/± 4/± 8/± 16g, an angular rate
range of ±125/± 245/± 500/± 1000/± 2000 degrees per
second, and robustness against mechanical shock. Proximity
sensing is provided by a VL53L1X time-of-flight (ToF)
sensor, which was chosen for its accuracy, ranging distance
(up to 4m), field of view (27◦), ranging frequency of 50
Hz, I2C communication protocol, and small package. Both
sensors were also chosen for their high bandwidth: with
six SUs mounted on the robot (Fig. 1) and sending data
wirelessly, we were able to receive data at a rate of 100Hz
from the IMUs and 50Hz from the distance sensor (although
the sensor is capable of a nominal bandwidth of 100Hz).
All files related to the design can be found at the associated
GitHub repository1.

IV. ACCELEROMETER-BASED KINEMATIC CALIBRATION

The goal of kinematically calibrating SUs is to identify
the 6D poses (i.e, 3D positions and 3D orientations) of
each SU mounted on the robot. With a known pose, the
robot can make better sense of tactile information; in Fig. 1
and Section VI, we use this information to demonstrate how
an obstacle-avoidance controller can utilize proximity sensor
data to detect objects at a distance (up to four meters) and
alter the robot’s trajectory to prevent collisions.

In this work, we formalize the problem of estimating
SU poses along a robot arm with the Denavit-Hartenberg
convention detailed in [10]. Importantly, our novel kinematic
calibration algorithm is exclusively based on accelerometer
readings, as our preliminary testing has indicated that angular
velocity readings from the gyroscope introduce significant
noise and drift to the data and do not improve perfor-
mance. We accomplish this by collecting three-axis linear
acceleration data (ax, ay, az) from each SU in multiple
robot configurations. Fig. 2 shows a high-level overview of

1 Finalized circuit schematics can be seen at https://github.com/
HIRO-group/RoboSkin_Circuit_Schematics.
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Fig. 2: Overview of the kinematic calibration algorithm: 1)
collect IMU data k~am

s and k~am
d at static and dynamic poses

for all SUk, ∀k = {1, · · · ,K}; 2) define a kinematic model
from joint jn to SUk expressed as nTk that is parameterized
by Φk; 3) optimize the parameters Φk by minimizing the
static and dynamic error functions Es and Ed for each SUk.
qn and q̇n represent joint angle and velocity of jn.

the proposed kinematic calibration algorithm; its three core
elements are detailed below.

A. Data Collection and Generation

The data collection step is tasked with obtaining sensor
readings used in the batch optimization algorithm detailed
in Section IV-C. Data collection is split in two parts: static-
pose data collection and dynamic-pose data collection. For
the purposes of this work, the order in which these steps
are performed is not relevant. The static-pose step collects
accelerometer readings in multiple joint configurations with
a stationary robot, which serves as a baseline to compensate
for static forces acting on the sensor when the robot is
motionless—i.e., gravity and baseline measurements. The
dynamic-pose step is tasked with collecting data with each
individual joint oscillating in a sinusoidal pattern to span its
full operational range; such information is used to perform
the optimization detailed in Section IV-C after the baseline
measurements are compensated for. More specifically, we
independently actuate each joint p with a low-level velocity
control defined by q̇p = A sin(2πft), where f is the
frequency, t is the time, q̇p is the joint velocity, and A
is the amplitude of the pattern. This formulation allows to
flexibly and conveniently reach either of joint angle, velocity
or acceleration limit; in particular, exerting large acceleration
allows for a larger signal-to-noise ratio, thus helping the
optimizer identify acceleration values in the presence of

https://github.com/HIRO-group/RoboSkin_Circuit_Schematics
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Fig. 3: Schematic depiction of SUs mounted on a robotic arm
(left) with each kinematic element of the robot labeled. The
zoomed-in image on the right illustrates how the SU poses
are estimated through DH parameters of the joint connecting
to the previous link: the transformation from the n-th joint
to the k-th SU can be computed via an intermediate “virtual
joint” vk located perpendicular to both the joint’s and the
SU’s reference frames. The axes depict the three coordinate
systems: joint n, SU k, and corresponding virtual joint vk.

noise. The data collection process is performed once and
saved for later use.

B. Kinematic Model Considerations

Before running the optimization step detailed in Sec-
tion IV-C, it is imperative to define a suitable kinematic
model of the robot. In this paper, we employ the modified
Denavit-Hartenberg representation detailed in [18], which is
based on the original work in [27]. The DH notation is
particularly convenient because it allows for expression of
relative poses of kinematic elements along a robot’s chain
with only four parameters rather than six, thus reducing
the dimensionality of the optimization problem. This dimen-
sionality reduction is achieved by leveraging the standard
mechanics of prismatic and revolute joints used in the vast
majority of robot arms; however, the same cannot be said
of skin units, which can be placed arbitrarily along a robot
arm and cannot take advantage of this simplification. To
guarantee compatibility with the DH convention, a “virtual
joint” is located between joint n and SU k, as depicted
in Fig. 3. This conveniently allows for the problem of
estimating the 6 degree-of-freedom (DoF) transformation
matrix nTk between the nth joint’s reference frame and the
kth SU’s frame to be decomposed into the estimation of two,
DH-compatible, 4-DoF matrices:

nTk =
[ nRk

n~rk
0 1

]
= nTvk [Φ (vk)] · vkTk [Φ (SUk)] , (1)

where nRk and n~rk are the rotational and translational
components of nTk, and Φk = [Φ (vk) ,Φ (SUk)] are the
DH-compatible parameters to be estimated—composed of
Φ (vk) = (dvk

, θvk , 0, 0) for virtual joint vk, and Φ (SUk) =
(dSUk

, θSUk
, aSUk

, αSUk
) for the corresponding SUk, where

d, θ, a and α represent displacement along z-axis, rotation
around z-axis, displacement along x-axis and rotation along
x-axis of the local frame respectively (See Fig. 3). Note that

the above equation still represents a 6-DoF problem, thus
flexibly allowing for any SU pose to be represented relative
to its corresponding joint n.

C. Parameter Optimization

The last step of the optimization algorithm pertains with
parameter optimization, which is tasked with calibrating the
kinematic model detailed in Section IV-B is with the data
collected in Section IV-A. Initially, the DH parameters for
all SUs are randomly initialized within a given range (cf.
Section V). At every iteration step, the ground truth accel-
erations are estimated from the kinematic model as detailed
in Section IV-C.1; then, a global optimization algorithm is
used to estimate the DH parameters by minimizing the error
between actual and predicted accelerations. This sequence
iterates until it reaches a stopping condition; that is, when
the iterative update in DH parameters estimations becomes
sufficiently small. Details are provided below.

1) Acceleration Estimation: The acceleration k~ak exerted
on SUk in its frame of reference (FoR) k can be estimated
via the Newtonian Equation of motion for a rotating coor-
dinate system. More specifically, the total acceleration can
be seen as a composition of three components: gravitational
acceleration ~gk, centripetal acceleration ~acen,k and tangential
acceleration ~atan,k. These three components can be formal-
ized as follows:

k~ak(Φk, qn, q̇n, q̈n) = kRn(Φk, q) ·
(
~gk + ~acen,k + ~atan,k

)
(2)

~acen,k(Φk, qn, q̇n) = ~̇qn ×
(
~̇qn × n~rk(Φk, q)

)
(3)

~atan,k(Φk, qn, q̈n) = ~̈qn × n~rk(Φk, q) (4)

With reference to Eq. (3), the centripetal acceleration ~acen,k is
composed of the joint angular velocity ~̇qn = [0, 0, q̇n] (which
can be measured during data collection), and the position
vector n~rk which represents the translational component of
nTk in Eq. (1). Since they are all defined in the nth rotating
joint’s reference frame, it has to be rotated from reference
frame jn to SUk through kRn. Note that the full acceleration
vector calculation is parameterized by Φk, which are the to-
be-optimized DH parameters.

The tangential component of joint motion on acceleration
reading of the SU requires the measure of joint angular accel-
eration, which is not readily available in robot manipulators
and therefore requires a numerical estimation. Conventional
methods (e.g. [28]) employ the second derivative of the
position vector n~rk to estimate a SU’s acceleration. However,
this differentiation does not include gravity and incorrectly
incorporates an additional centripetal force from the SU
moving on a rotating joint, as detailed in Fig. 4. This
additional centripetal component is not only redundant, but
also negatively affects optimization performance; therefore,
in this work we remove non-tangential forces by employing
Eq. (5), followed by Eq. (6):



Fig. 4: Illustration of the numerically computed tangential
accelerations for joint n in its respective FoR. The plot on the
right shows the accelerations computed by taking the second
derivative of the position vectors (the red dots on the left).
The accelerations include not only a tangential acceleration
but also an unnecessary centripetal acceleration.

~atan,k = ~etan ·
~r(h) + ~r(−h)− 2 · ~r(0)

h2
(5)

k~atan,k = kRn · ~atan,k (6)

Above, ~r(h) is a parametrization of position vector n~rk as
function of discrete time h = 0.001, and ~etan is an unit vector
in the tangential direction.

2) Error Functions: For each SUk attached to joint n, we
optimize its DH parameters Φk by separately minimizing two
distinct error functions: the static acceleration error Es and
the dynamic acceleration error Ed. For each recorded static
pose p, the Es only holds rotational information because it
depends exclusively on gravitational acceleration; therefore,
it can be used to estimate the rotational DH parameters
included in nRk(Φk). It is worth noting that there is a mis-
alignment in coordinate frames: the measured acceleration
k~amk,p is defined in its own reference frame k, whereas the
gravity vector b~g is defined in the base frame. Therefore,
the acceleration vector is converted into base frame using a
rotation matrix bRn as computed from forward kinematics.
The static acceleration error is then defined as the L2 norm
between the measured acceleration and the gravity vector:

Es(k) =
1

P

P∑
p=1

∣∣∣bRn · nRk(Φk) · k~am
k,p − b~g

∣∣∣2, (7)

where P represents the total number of poses collected.
Conversely, the dynamic acceleration error Ed,k is com-
posed of both rotational and translational information. Upon
optimization of nRk(Φk) from Eq. (7), the translational
component of the problem can be then estimated via the
L2 norm between the measured acceleration k~amk,d,p and
the ground truth estimated from kinematics k~ak,d,p(Φk) and
expressed in the SU’s reference frame:

Ed(k) =
1

P

P∑
p=1

n∑
d>0,

d=n−2

∣∣∣k~amk,d,p − k~ak,d,p(Φk)
∣∣∣2, (8)

where d represents the sole joint being actuated during the
data collection process to exert an acceleration on each SU.
Three previous joints before the nth joint are used to compute
this error function. k~ak,d,p can be computed from Eq. (2) for

Fig. 5: Comparison between estimated SU poses (left) and
ground truth poses (right) on a Franka Emika Panda robot
arm. The grey boxes represent the estimated SU with x (red),
y (green), z (blue) axes respectively.

joint d and pose p. The optimization procedure is repeated
for all SUs.

V. EXPERIMENT DESIGN

To validate the proposed approach with reproducible and
precise ground truth information, a quantitative evaluation
is conducted in simulation via the Robot Operating System
(ROS, [29]) and the Gazebo simulator [30]. A subsequent
deployment on a real-world Franka Panda robot (see Figs. 1
and 5) is then used to provide qualitative analysis and a con-
trol example. We demonstrate that our algorithm outperforms
prior work [28] and allows for precise autonomous calibra-
tion on 7-DoF robotic arms in both simulated and real-world
environments. In the following, we detail parameters of our
experimental evaluation so as to improve reproducibility and
repeatability of this work. Data and algorithms are available
at the associated GitHub repository2.

Due to limitations of the original algorithm presented
in [28], we modified it by including gravitational acceler-
ation to follow Eq. (2). For clarity, in the following we
report a comparison of the proposed method against this
enhanced version—which we hereinafter refer to as modified
Mittendorfer’s method (or mMM ), as the original work
was orders of magnitude worse than ours. Similarly to
[28], the base of the robot serves as the starting point for
kinematic exploration; for simplicity, we aligned the base of
the Panda arm to coincide with the world reference frame.
In both the simulation and the real world, we mount and
simultaneously calibrate six SUs placed perpendicularly to
the surface of each link—one per link except for the more
proximal link. It is worth noting that an SU placed on the
first link cannot be calibrated because there exists an infinite
number of solutions with the same acceleration values, due
to the fact that all the dependent values ~̇q, ~̈q, and ~r are

2 https://github.com/HIRO-group/ros_robotic_skin
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TABLE I: Comparison of the Average L2 Norm positional error [cm] and absolute distance in quaternion space (with units
multiplied by 10−1 for reasons of space) of our method (OM) against the modified Mittendorfer method (mMM). 4 different
sets of poses are tested and optimization is run 10 times per set; average and standard deviations of these 40 trials are below.

SU1 SU2 SU3 SU4 SU5 SU6 Average
Positional OM 0.28± 0.15 0.39± 0.15 0.78± 0.39 1.15± 0.88 0.80± 0.36 0.25± 0.095 0.66± 0.60

Error [cm] mMM 5.3± 7.1 2.6± 0.23 5.4± 4.9 9.5± 9.0 1.4± 0.91 2.3± 2.4 4.4± 5.9
Quaternion OM 0.10± 0.058 0.054± 0.041 0.023± 0.012 0.019± 0.013 0.021± 0.023 0.045± 0.053 0.044± 0.059

Distance mMM 5.5± 5.9 0.16± 0.11 3.6± 6.1 0.057± 0.022 0.044± 0.015 2.5± 4.3 2.0± 4.4

TABLE II: True and Estimated DH Parameters of one of the four SU configuration sets we tested.

j1 to SU1 j2 to SU2 j3 to SU3 j4 to SU4 j5 to SU5 j6 to SU6

true est true est true est true est true est true est
θv 1.571 1.571 0.000 -0.014 -1.571 -1.571 3.141 3.141 -1.571 -1.571 1.571 1.565
dv 0.060 0.060 -0.080 -0.076 0.080 0.085 -0.100 -0.007 0.030 0.030 0.000 0.001
θSU -1.571 -1.545 0.000 -0.001 1.571 1.567 3.141 3.141 1.571 1.541 -1.571 -1.570
dSU 0.060 0.062 0.050 0.053 0.060 0.060 0.100 0.142 0.050 0.048 0.050 0.049
aSU 0.000 0.001 0.000 0.000 0.000 0.001 0.000 -0.001 0.000 -0.001 0.000 -0.001
αSU 1.571 1.583 1.571 1.568 1.571 1.570 1.571 1.565 1.571 1.570 1.571 1.571

equal along the first link. We used the native Gazebo IMU
plugin to simulate the IMU physics and behavior. The DH
parameters are initialized randomly within reasonably large
bounds: θv ∈ [−π;π], dv ∈ [−1; 1], θSU ∈ [−π;π], dSU ∈
[−1; 1], aSU ∈ [0; 1], αSU ∈ [−π;π] (units are in meters
for displacements and in radians for angles).

Data collection is performed only once both in simulation
and in the real world. P = 16 poses were collected, taking
less than 20 minutes. We used a joint velocity controller to
oscillate at 2rad/s. Both IMUs and controller messages were
published and controlled at 100Hz. Two seconds of rest were
set between each sequence to prevent outliers and to make
sure the robot could reach its desired position in time.

The parameter optimization step leveraged a randomized
global optimization algorithm (MLSL LDS) [31] together
with a derivative-free local optimizer (LN NEWUOA) [32]
of the NLopt library [33]. Although we do initialize the DH
parameters within a set of boundaries, we use NEWUOA
unconstrained optimization to allow for better exploration
of the DH parameter search space—which, in our case, is
a 36-dimensional space, due to each one of the six SUs
having six parameters to optimize. Due to the nature of
the DH convention, there are multiple solutions for each
SU’s DH parameters, and using unconstrained methods al-
lows us to more systematically explore those solutions and
avoid local minima. It is worth noting that performance of
the proposed algorithm is increased when optimizing all
IMUs concurrently, as data coming from multiple IMUs
helps with redundancy and noise reduction; however, the
proposed method works even when calibrating each IMU
independently from the rest. The optimization for the static
acceleration error is terminated once the error is below a
threshold of 0.01 or if the parameter difference per iteration
is less than 0.001. Similarly, the optimization for the dynamic
acceleration error is stopped once the change in the SU DH
parameters reaches a threshold of less than 0.001. Both data
collection and optimization were performed on a Lenovo
Thinkpad X1 Extreme, 2nd Generation, with 12 Intel i7-
9750H CPUs and a GeForce GTX 1650.

VI. RESULTS AND DISCUSSION

A. Simulation experiments

In simulation, we evaluate our algorithm based on the
average L2 Euclidean distance and quaternion distance over
all of the skin units. To demonstrate the robustness of our
approach, we randomized our experiment by the following:
i) we tested 4 different sets of SU configurations, i.e. we
placed the SUs in 4 different randomized locations along
the robot’s body; ii) we optimized SU poses 10 times per
set. Additional tests do not seem to alter average results
nor to increase variance. The mean and standard deviation
of the resulting calibration on these 40 trials are depicted
in Table I, and the corresponding estimated DH parameter
values are shown in Table II. As mentioned in Section V,
we chose not to compare against the original method in
[28] because of poor performance (about 90cm positional
error) and low convergence characteristics of the vanilla
algorithm. According to Table I, while the modified version
of Mittendorfer’s method (mMM) had an average error of
4.4cm and a high variance of ±5.9cm, our method (OM)
has an error of 0.66cm for the given SU placements, a
six-fold improvement; similar considerations can be said
of the orientation error. In addition to the accuracy, we
also validated the effectiveness of separating the original
optimization problem into two parts. Thanks to this solution,
we measured a 4x speed up of the separated problem (433
seconds) with respect to the original problem (1797 seconds).

B. Real-world experiments

To further test the effectiveness of the algorithm, we con-
ducted an experiment in the real world—and more specifi-
cally on a Franka Panda robot. The following is worth noting:
i) the work in [28] did not perform real-world calibration
experiments, and to the best of our knowledge our paper is
the first time such an approach has been validated on a real
robot platform; ii) we expect somewhat reduced performance
due to the introduction of additional layers of complexity—
from possible time delays in the robot network that misalign
collected data, to sensor noise in the IMUs, to hardware



Fig. 6: Trajectory redirection for obstacle avoidance. Right: a human approaches a robot with calibrated skin units;
their accurate pose estimation allows the robot to precisely perceive the person from a distance. Bottom-Right: real-time
visualization of the robot and obstacles (shown as green spheres) as sensed by the proximity sensors placed on the calibrated
SUs; only below-threshold signals (arm and end-effector SU) affect the robot’s motion. Left: combined graph of proximity
data over time vs. the robot’s end effector error along a circular trajectory. The two shaded areas indicate intervals when
the human approaches a skin unit (below the avoidance threshold), causing only a temporary perturbation in the error.
The perturbation stays low in the orange colored area (arm proximity activation) compared to the green area (end effector
proximity activation) because the robot leverages the redundancy afforded by its kinematic chain to avoid colliding with the
person while concurrently satisfying its main task objective.

limitations of the platform. Similarly to the simulation, IMU
data is retrieved at 100Hz and recorded for 3 seconds at each
pose; however, we lengthen the resting time to 10 seconds in
order to allow for better separation of data collected at each
pose. Additionally, we modified the oscillation magnitude
to 2.0 and frequencies to 0.75, 0.25, 0.35, 0.55, 0.75, 0.9
and 0.9Hz for each joint respectively, in order to exert high
acceleration but restrain the displacement. Data collection
on the real robot was conducted on a computer with a real-
time kernel and took less than 30 minutes, to allow ample
time for the real robot to move from one position to another.
We collected data for P = 12 different poses. A qualitative
comparison of the actual SU poses against the estimated SU
poses are is shown Fig. 5. The grey boxes in simulation
represent the estimated SUs and the corresponding pictures
show the actual SU placements. Although only qualitative,
it is clear how the poses are, for the vast majority, very
similar from one another—apart from one SU that seems
to be more displaced apart. On the real robot, the resulting
average position error for all SUs was 5.1cm and the av-
erage orientation error was 0.12, whereas mMM achieves a
9.2cm error for position and a 0.43 error for orientation. As
mentioned in Section V, the original contribution from [28]
was significantly worse in the real world, with errors of up
to 90cm—i.e., an order of magnitude more than our work.

C. Control example

After calibration, the estimated poses are then used for
an obstacle avoidance control example, depicted in Fig. 6
and shown in the accompanying video. To demonstrate the
overall system, we implemented an obstacle avoidance con-
troller to track waypoints in Cartesian space. We formalized
it as a quadratic optimization problem to compute the optimal
joint velocities while avoiding obstacles. To leverage the
skin units for obstacle avoidance, we first find points on

the robot’s body closest to the obstacles and set constraints
to restrict the approaching velocity. Further details can be
found in [9]. In the example in Figure 6, the robot is
tasked with following a continuous circular trajectory in
operational space, and constantly monitors the calibrated
proximity readings at the nominal frequency of 50Hz. The
bottom right image in Fig. 6 shows a visualization of the
robot and the obstacles detected in real time by the proximity
sensors; the robot will take corrective actions if an obstacle
is sensed within one meter of a skin unit (as depicted by the
dashed line in the graph). It is worth mentioning that in this
demonstration we have chosen an arbitrary distance of one
meter to guarantee operational safety in presence of humans;
however, such threshold can be modified as function of task
progress and perceived comfort of the human in presence
of the robot. The effectiveness of the control example is
concretely demonstrated in the left graph. The two shaded
areas indicate when the human is approaching a skin unit
below the avoidance threshold: the perturbation stays low in
the orange colored area (arm proximity activation), whereas
it is more prominent in the green area (end effector proximity
activation); in the first case, the robot effectively leverages
its redundancy to avoid colliding with the person—which
is not possible when the obstacle is approaching the end-
effector of the robot’s kinematic chain. Our control example
demonstrates that the estimation accuracy is sufficient for the
motivations highlighted in Section I—that is, nearby space
perception for close-proximity Human-Robot Collaboration.
The controller is able to quickly adjust its trajectory after
a skin unit senses an obstacle, leading to operationally safe
behavior. In addition to these results, we have shown further
information on both the algorithm and the control example in
the accompanying video (also available at this link https:
//youtu.be/LzVkLmw5WA0).

https://youtu.be/LzVkLmw5WA0
https://youtu.be/LzVkLmw5WA0


VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an accurate method for kine-
matically calibrating multiple skin units mounted on a col-
laborative robotic arm. Our approach is robust to noise and
scales gracefully with the number of SUs, while not requiring
expensive tracking systems with computational overhead.
The proposed work can effectively estimate SU poses with
sub-cm precision in simulation, and less than 5cm in the real
world, for a total time from installation to effective utilization
of less than 40 minutes (30m for data collection + ∼ 7m
for optimization of multiple SUs). We have open-sourced
our code and data for the research community, and we are
hopeful that this demonstration will be the first of many to
leverage calibrated skin unit poses for a future of plug-and-
play distributed artificial tactile sensing for robotics.

In future work, we will focus our attention in four
directions: i) extensively investigate the trade-off between
calibration accuracy and safe robot operation in human-
populated environments (by comparing against human skin
sensitivity and capability); ii) understand optimal placement
of SUs along the robot’s body to achieve best coverage and
robust perception of the robot’s surroundings; iii) further
iterate on the artificial skin technology, adding heteroge-
neous sensing, flexible electronics, and dense whole-body
coverage; iv) leverage i-iii) for novel robot behavior, such as
environment-informed null-space control and human-aware
motion planning. Ultimately, these applications will bring us
closer to the realization of true, inherently safe human-robot
interaction.
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