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Abstract— Real-time control is an essential aspect of safe
robot operation in the real world with dynamic objects. We
present a framework for the analysis of object-aware con-
trollers, methods for altering a robot’s motion to anticipate
and avoid possible collisions. This framework is focused on
three design considerations: kinematics, motion profiles, and
virtual constraints. Additionally, the analysis in this work relies
on verification of robot behaviors using fundamental robot-
obstacle experimental scenarios. To showcase the effectiveness
of our method we compare three representative object-aware
controllers. The comparison uses metrics originating from
the design considerations. From the analysis, we find that
the design of object-aware controllers often lacks kinematic
considerations, continuity of control points, and stability in
movement profiles. We conclude that this framework can be
used in the future to design, compare, and benchmark obstacle
avoidance methods.

I. INTRODUCTION

Ensuring safety is paramount as robots transition into
spaces occupied by people in highly dynamic environments
such as hospitals, homes, and schools [1]. Safety implies
the ability to perceive and act on information in real-time.
Multiple strategies have been introduced to help robots avoid
harmful contact and achieve physical safety [2]. Unlike
control methods, complex motion planners and prediction
models cannot satisfy real-time safety requirements due to
their computational complexity. Controllers can react on-line
to obstacles in their environment by changing the robot’s
motion to avoid or anticipate contact. We define this category
of controllers as object-aware controllers (OACs). OACs are
used to avoid and reduce the force of contact with obstacles
not accounted for by a robot’s trajectory planning system.
Scenarios such as this can be due to errors in perception,
occlusions, dynamic obstacles, or presence of high clutter.
Despite the advantages of control based methods, limited
analysis has been conducted on the strengths and limitations
of OACs [2]. Without analysis, it is difficult to compare
existing controllers or propose actionable insights for future
direction of research.

In this work, we design and test a systematic approach
to object aware controller analysis. The novelty of our work
lies in (1) defining fundamental design considerations for
structured and robust analysis of OACs in varied contexts;
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Fig. 1: This diagram depicts a scenario involving a robotic manipu-
lator and two dynamic obstacles, shown as small black objects. The
colored rays emanating from these obstacles represent the distance
from the obstacles to various control points along the robot’s body.
The red ellipsoid illustrates the current range of motion for the end-
effector. The ellipsoid and rays are components of the analysis of
object aware controllers presented in this work.

(2) comparing three representative OACs based on our cri-
teria to highlight their strengths and weaknesses; and (3)
proposing directions for future research in the field based
on our findings. This analysis will bridge the gap between
the understanding of robot movement and the design of
algorithms that result in a particular motion. This is an
essential part of building intelligent systems that work in
complex, dynamic environments.

The experiments presented in this work are based on fun-
damental robot-obstacle interactions. For example, Figure 1
shows a snapshot of an avoidance interaction between an
obstacle and robot. The red dotted ellipsoid containing the
robot end-effector (EE) is a representation of the robot’s
manipulability (see Section IV) in the current joint configu-
ration. We track the resulting movement of several avoidance
methods. This information is then distilled into a set of
understandable metrics and graphs for each control strategy.
Evaluation criteria, used in this work to examine three OACs
([3], [4], [5]), is developed based on the following design
considerations: 1) Kinematics - OACs are analyzed based on
their capacity to take into account the position and movement
of multi-degree of freedom kinematic chains that form the
structure of a robotic manipulator; 2) Motion profiles - OACs
are analyzed based on their ability to produce a smooth
velocity, acceleration, jerk, and end-effector path profile; 3)
Virtual constraints - OACs are analyzed based on their ability
to generate movement requirements in response to their
environment. By considering kinematics, motion profiles,



(a) High Manipulability

(b) Low Manipulability

(c) Static Control Points

(d) Dynamic Control Points

(e) Low jerk

(f) High jerk

Fig. 2: Each column represents one of the three design considerations used to evaluate controllers in this work, introduced in Section IV.
a) High-manipulability configuration as shown from the large ellipsoids. Eigenvectors of JJ⊤, where J is the robot Jacobian introduced
in Section IV, are shown as orange arrows. b) An undesirable configuration due to movement restrictions caused by the red object, the
smaller the ellipsoids are, the less ability the robot has to move a particular point freely. c) Static control points are determined by the
controller designer and placed in predefined locations. Used in [3]. d) Dynamic control points are selected by determining the closest
point on the robot body to an obstacle. Used in [4] and [5]. e) Low jerk is exhibited and the robot smoothly moves away from the obstacle
as seen by the EE orange path. f) The movement restrictions imposed on the EE cause the jittery motion as seen in the jagged path to
its final location.

and virtual constraints, we assess three representative OACs
and conclude that our approach can be used to showcase the
reactive motion of future OACs, in addition to creating a
baseline for comparison with current methods.

This paper is organized as follows: Section II provides
background on OACs; Section III describes each controller
and its avoidance mechanism in detail; Section IV intro-
duces our evaluation metrics based on our design criteria;
Section IV-B outlines our experimental setup, and Section V
presents our results and conclusions.

II. RELATED WORK

Robotic manipulation in dynamic environments requires
real-time trajectory adjustment to avoid or anticipate col-
lisions while continuing to execute a task. Historically,
to ensure safe interaction with no external environmental
sensors, collision detection has been used to quickly stop
a manipulator [6]. This method does reduce the overall
force and increase safety during interactions, but the robot
stops movement suddenly and cannot anticipate or avoid
contact. Various OACs allow robot manipulators to avoid
collisions with dynamic obstacles in real-time [4], [5], [7]–
[12]. An early method for obstacle avoidance [7] uses
repulsive vectors, a simplified form of artificial potential

fields [13], to alter the robot’s end-effector (EE) trajec-
tory while it continues towards the robot’s main task. An
alternative avoidance method using an Explicit Reference
Governor formalism was used to ensure that particular safety
constraints between a robot manipulator and human are not
violated [9]. Our previous work enabled robot manipulators
to anticipate contact, while still attempting to avoid collisions
when possible [5]. Nearby obstacle position information has
also been used to alter impedance controlled robot stiffness
values [14] to soften collisions. Lastly, the per-instant pose
optimization method CollisionIK introduced in [8] uses a
normalized objective function introduced in [15] to weight
its avoidance terms.

While all of the avoidance methods introduced in this
section allow for some variation of obstacle avoidance, there
exists a significant gap in knowledge of limitations, benefits,
and practical use of each in real-world scenarios. Through
analysis of existing OACs, we outline several criteria for
evaluating and comparing their real-world performance.

III. OBJECT-AWARE CONTROLLERS (OACS)

In this work, we analyze characteristics of three Object
Aware Controllers (OACs). We use the primary author’s last
name to refer to each controller throughout this work. For



example, the controller introduced in [7] will be referred
to as “Flacco”. The other two methods used in this work
are “Ding” [4] and “Escobedo” [5]. The controllers we
evaluate in this work are chosen due to their similarities
in optimization formulation and applied restrictions. In this
section, we formalize each controller’s specific avoidance
mechanisms.

A. Assumptions for the evaluation of OACs

We introduce a general obstacle representation where we
assume that a robot’s perception system can reduce any
pertinent sensor data to a finite set of rigid obstacles O,
where each element o ∈ O contains all information required
for a particular controller. Each of the evaluated OAC’s main
tasks and avoidance constraints are expressed in quadratic
programming (QP) notation, introduced in Equation (1).

min
q̇

1

2
q̇⊤Hq̇+ f⊤q̇ s.t.

{
Aq̇ ≤ b
b1 ≤ q̇ ≤ bu

(1)

Here H is the quadratic objective term and f is the linear
objective term created by augmenting each controller’s main
task, which all share the first term Equation (3), to fit the
QP formulation. Linear inequality constraints are added in
Aq̇ ≤ b. Joint velocity q̇, lower limit bl, and upper limit
bu are specified in the form bl ≤ q̇ ≤ bu, which for all
controllers in this work is expressed:

0, q ≤ ql

q̇l, otherwise

}
≤ q̇ ≤

{
0, q ≥ qu

q̇u, otherwise.
(2)

In Equation (2), ql and q̇l represent the lower bounds of
the joint position and velocity, whereas qu and q̇u represent
the upper bounds. All controllers evaluated in this work are
implemented using Cartesian velocity control and share the
same first main task term, expressed as:

g(q̇) =
1

2
(ẋd − Jq̇)⊤(ẋd − Jq̇) (3)

Here, g(q̇) represents the quadratic error between the desired
velocity ẋd ∈ Rm and the robot’s actual velocity Jq̇ ∈ Rm.
q̇ ∈ Rn is the joint velocities of an n-joint, kinematically
redundant robot manipulator. J ∈ Rm×n contains the first
order partial-derivatives of the robot’s joint positions in
relation to the EE Cartesian velocity ẋ. This relationship
is expressed as:

ẋ = Jq̇ (4)

Ding and Escobedo were originally introduced using a QP
formulation, which allows hard constraints to be placed
on manipulator motion. We implement Flacco in the QP
formulation, but do not include linear inequality constraints.

B. Flacco [7]

[7] uses repulsive vectors and Cartesian constraints with
artificial forces to avoid collisions. Repulsive vectors apply
a virtual force that alters the robot’s end-effector trajectory
in real-time. As detailed in Figure 3, V (p) is the repulsive

V (p)

JT
p d̂p,omin

r

Fig. 3: Flacco [7] controller diagram with obstacles represented as
red circles. The orange arrow originating from the end-effector is
introduced in Equation (5) as a repulsive force. Blue rectangles
show joint restrictions caused by constraints added through Equa-
tion (10).

vector applied to a control point p. The applied repulsive
force, shown in Figure 3, is computed as:

V (p) = v (p,omin) V̂a(p) (5)

Where v(p,o), the magnitude of the repulsive force from
the closest obstacle omin to p, is defined as:

v(p,o) =
Vmax

1 + e(∥dpo∥(2/ρ)−1)α
(6)

Here, Vmax is a user-defined maximum velocity, ρ represents
the distance where the repulsive vector becomes negligible,
dp,o is the direction vector from p to o, ∥dp,o∥ is the
distance between the two points, and α is a shape factor.
In Equation (5) V̂ a(p) is the unit vector of the sum of all
obstacles within the region of surveillance S, defined as:

Va(p) =
∑
o∈S

v(p,o)d̂p,o (7)

As a result, the magnitude of movement in Equation (5)
depends on the closest obstacle point, while the direction
of movement is affected by all obstacles within the region
of surveillance.

In addition, joint velocity constraints are added to avoid
collisions with obstacles near the robot’s body for multiple
control points. For example, in Figure 3 the blue squares are
the control points where movement constraints are placed
due to the nearby object. The position of a control point p
is statically defined for this controller as a position along the
robot’s kinematic chain, as seen in Figure 2c. Figure 3 shows
joint restrictions being used to avoid a possible collision. For
the joint velocity constraints, we first calculate the risk of
collision with the nearest obstacle:

r =
v(p,omin)

Vmax
(8)

The value of r is then used to calculate the degree of
influence of the constraint on each joint si ∈ s where s
is defined:

s = JT
p d̂p,ominr (9)

where Jp is the Jacobian of control point p. The restrictions
from Equation (9) are shows in blue in Figure 3. The



w⊤∇q∥d∥≤ 0

d̂⊤Jcq̇ ≤ ẋa

Fig. 4: Ding [4] controller diagram with obstacles represented as
red circles. The rectangle encapsulating the EE shows movements
restrictions from Equation (12), the orange portion shows restricted
movement while the green shows where the robot can still move.
This first restriction is also added to the body control points,
when obstacles are nearby. The rectangle near the robot body
shows the weighted sum distance gradient restriction introduce in
Equation (13).

acceptable limits of the velocity of all joints are then set
as:

if si ≥ 0, q̇max,i = Vmax,i (1− r)
else q̇min,i = −Vmax,i (1− r)

(10)

In situations where a moving obstacle’s velocity is known,
the Pivot Algorithm [7] is used to alter the repulsive vector
to move in a direction normal to the obstacle’s velocity.

C. Ding [4]

The main task equation for this controller adds a term to
avoid kinematic singularities based on a robot manipulability
measure, µ, to Equation (3), expressed as:

g(q̇) =
1

2
(ẋd − Jq̇)⊤(ẋd − Jq̇) +

µ

2
q̇⊤q̇ (11)

see [16] for a detailed explanation of µ. The first movement
constraint is added to control points along the robot body
closest to each obstacle as shown in Figure 4. In an obstacle-
free scenario, the limitations would not apply and the robot
would be free to move at the user-defined nominal speed.
These constraints are defined as

d̂⊤ẋc = d̂⊤Jcq̇ ≤ ẋa , (12)

where d̂ is the unit vector of the distance between an obstacle
and control point, ẋc is the velocity of the control point,
and Jc is its Jacobian. This additional constraint limits the
approach velocity of ẋc to a scalar ẋa, determined from
a stepwise function dependent on distance to the nearest
obstacle. The second avoidance constraint, the weighted
gradient of distance from p to all obstacles within a region
of surveillance o ∈ S, is calculated as:

Jc = w⊤∇q∥d∥ (13)

where w is a distance-based weight vector. For each obstacle,
wi is calculated from a user-defined function. In this work we
utilize the distance function from Equation (6). Equation (13)
causes a control point to increase the sum of all weighted
distances to obstacles within the region of surveillance,

d̂⊤Jcq̇ ≤ ẋa

d̂⊤Jcq̇ ≤ ẋa

∥dlowest ∥
dmax

ẋd

k
2 (q̇mid − q̇)⊤(q̇mid − q̇)

Fig. 5: Escobedo [5] controller diagram with obstacles represented
as red circles. The rectangles shows movements restrictions from
Equation (12), the orange portion shows restricted movement while
the green shows where the robot can still move. The orange arrow
shows the scaled EE velocity introduced in Equation (17), the black
arrow is the initial velocity.

visualized in Figure 4. The constraint added to Equation (1)
based on this term is −Jcq̇ ≤ 0.

D. Escobedo [5]

This controller’s main task equation consists of a third
term added to Equation (11):

g(q̇) =
1

2
(ẋd − Jq̇)⊤(ẋd − Jq̇)+

µ

2
q̇⊤q̇

+
k

2
(q̇mid − q̇)⊤(q̇mid − q̇).

(14)

The additional third term causes the robot to favor joint
positions in the middle of its joint limits, keeping the robot
away from undesirable joint configurations that may lead to
error states. k is a scaling factor for weighting the middle
joint term while q̇mid represents the desired joint velocity
for movement towards the joint’s middle position.

Movement restrictions are utilized to allow the robot to
avoid collisions. As introduced in Equation (12), d̂TJcq̇
limits the velocity of a particular control point. The control
point’s maximum approach velocity ẋa is computed:

ẋa =

Va − Vmax : if d < dnotice and d < drepulse,

Vb : if d < dnotice and d ≥ drepulse,

Drop Restriction : otherwise,
(15)

where:

Va =
Vmax

1 + e
α(2 d

dcrit
−1)

; Vb =
Vmax

1 + e
α(2

d−dcrit
dnotice−dcrit

−1)
. (16)

Vmax is the user-defined maximum magnitude, d is the dis-
tance closest point on the robot’s body to the object, drepulse
is the distance where the repulsive vector reaches a negligible
magnitude, and dnotice is the distance at which movement
restriction begin to be imposed. dcrit is the distance at which
the the maximum approach velocity ẋa becomes a negative
value, limiting the control point to only move away from an
object. Additionally, end-effector velocity is reduced when
in proximity to an obstacle:

ẋd =
∥dlowest ∥
dmax

ẋd (17)



where dlowest is the norm of the distance to each obstacle
in a region of surveillance within a user-defined maximum
distance dmax and selecting the smallest norm, creating a
scaling term that reduces the EE velocity. In order to prevent
erratic motion from vanishing obstacle readings, a linear
decay formula is applied to simulate an obstacle moving
away from the robot [5].

IV. EVALUATION FRAMEWORK

In this section, the framework used for evaluation of
OACs is described. The framework consists of several de-
sign considerations and a set of experiments. These design
considerations are chosen for their universal application to
robot movement analysis.

A. Design Considerations

1) Kinematics: Kinematics is a branch of mechanics
which deals with the motion of bodies through space and
time. Since robots are composed of interconnected bodies
and by their very essence designed for motion; kinematics
is fundamental for robot analysis. Out of the many aspects
of kinematics, we choose to focus on manipulabilty, which
is derived from the robot’s Jacobian. This metric is used to
interpret the capabilities of robot motion at any given time.

Manipulability typically measures the capacity of a robot
to position and orient its EE at a given joint configuration.
The kinematic chain properties of a robot manipulator allow
us to extend this definition from its focus on the EE to
any control point. Therefore, manipulability can be used to
demonstrate the ability of a control point to move in various
directions within the task space, as well as how close it is
to a singularity.

a) Manipulability ellipsoid: Using the Jacobian, the
properties of the manipulator’s movement can be examined to
produce a metric for assessing a robot’s ability to move along
the principal axes, as depicted in Figure 2a. This information
is extracted from the manipulability ellipsoid.

q̇⊤q̇ = 1 q̇ = J−1ẋ ẋ⊤(JJ⊤)−1ẋ = 1 (18)

Consider all EE velocities that can be obtained by choosing
joint velocity vectors, q̇, of unit norm. In this case, the left
term in Equation (18) represents the points on the surface of
a sphere in the joint velocity space. Based on the relation
of the middle term, the right term represents the points
on the surface of an ellipsoid in the EE velocity space.
Where JJ⊤, as in Equation 20, defines the properties of
a hyperellipsoid in 6D, of which only the 3D translational
component will be considered. The geometry of the ellipsoid
can be determined by looking at the singular value decompo-
sition of the matrix JJ⊤, which is a square, real symmetric
matrix. The eigenvectors v represent the axial direction of the
operability ellipsoid, see Figure 2a, and the square root of the
eigenvalues λ represent the size of the ellipse with respect to
the corresponding axial direction. When the robot reaches a
singularity, the Jacobian loses rank and the ellipsoid becomes
degenerate. This is characterized by a zero length in one
of the principal axis. The ellipsoid can be distilled into

various metrics that illustrate the controller’s impact on the
motion of the robot within its manipulability range. For
our analysis, we create a metric that tracks the alignment
of a repulsive force with the ellipsoid’s eigenvector in the
direction of lowest axial operability. The metric is defined
in Equation (19) as a scalar projection of the repulsive
force V (p) from Equation (5), or equivalent restriction, on
minimum operability eigenvector vmin. A larger number of
occurrences where a control point is directed to move along
the axis of least manipulability indicates that a controller
is less effective at leveraging kinematics to move the robot
away from an obstacle.

projvminV (p) =
V (p) · vmin

|vmin|2
(19)

b) Manipulability scalar:: A scalar value manipula-
bility metric w is used to represent how freely the robot
can move as a relationship between potential movement
directions [17]. This metric uses the general form of the
Jacobian, J, which relates the rate of change of the robot’s
joint velocities q̇ to the end-effector velocity ẋ, as shown in
Equation 4.

w =
√

det(JJ⊤) (20)

This measure varies depending on the robot configuration.
Larger values of w indicate more freedom of movement in
Cartesian space, while smaller values indicate that the robot
is approaching a singular configuration. In our experimental
scenarios, w is tracked over time as the controller attempts
to avoid obstacles in its environment. We evaluate each con-
troller based on its ability to direct the control points away
from singularities and towards kinematic regions of high
manipulability, measured by a high manipulability scalar.

2) Motion Profiles: A motion profile includes the po-
sition, velocity, acceleration, and jerk of the robot EE or
joints at every time-step. Trajectory planners often consider
motion profiles when describing how a robot should move
to a desired position. In the planning process, considerable
emphasis is placed on generating smooth motions [18].
With the outlined design considerations; it is argued that
a controller should generate smooth motion profiles that
remain within the bounds of its operational properties, as
well as actively responding to dynamic obstacles.

The mechanical properties of a robot pose limit on the
range of possible values that compose the motion profile.
Acceleration, deceleration, and velocity are limited by the
inertia of the mechanical system, while the cartesian path
of the robot links is confined to its task space. Jerk must
remain within the robot’s joint limits because the current
of the motor cannot be instantly changed. Commands to
the motors must also stay within the bounds introduced by
the The International Organisation for Standardization (ISO),
which restrict allowable power and force as a measure for im-
plementing mechanically safe collaborative robots (cobots)
[19].

In this work, emphasis is placed on the jerk profiles
of the joints. Minimizing jerk reduces vibration, wear on
mechanical parts, and the potential for servo errors [20]. To



assess this aspect of the robot’s movement, the jerk profiles
are calculated over the course of trajectory execution and
obstacle avoidance. This data is used as a metric of compar-
ison in the analysis of OACs. Spikes in jerk demonstrate a
controller’s inability to provide smooth velocity changes to
a robot during obstacle avoidance.

3) Virtual Constraints: Through analysis of virtual con-
straints, the design principles of various OACs can be veri-
fied. Virtual constraints represent relations between the state
variables of a mechanical model. OACs use forces at control
points to form virtual constraints. Measuring the properties
of repulsive forces and control points demonstrates how
obstacle inputs trigger reactive behaviors. The magnitude of
the force, for example, can be used to assess the reactivity
of a controller when acting on a given control point. The
location of a control point can tell us which part of the
robot body is used as a reference for obstacle behavior.
Different parts of the robot’s body have varying properties,
such as manipulability, as discussed in previous sections.
In this framework, the shape of the repulsive force profile
in relation to the minimum distance to an obstacle is used
as a metric for virtual constraints. The increase or decrease
of the repulsive force at every point in time should taken
into consideration for analysis of each controller defined in
Section III.

B. Experiments

An overarching purpose of our framework is the experi-
mental evaluation of obstacle avoidance behaviors of OACs
in various obstacle-robot interaction scenarios. Examples of
possible variation among experiments include the number of
obstacles, velocity of obstacles, direction of obstacle travel,
trajectory of robot, and point of contact between the robot
and an obstacle. To demonstrate the merit of our framework,
we conduct the following experiments with three OACs,
described in Section III.

All experiments are conducted on a real 7-Degree of Free-
dom (7-DoF) Franka Emika Panda robotic arm. Controllers
are developed using C++ and ROS. Objects are introduced
into the robot’s environment virtually, using rostopics to
guarantee that each controller has access to the exact same
information.

1) Static Robot, Dynamic Obstacle (SRDO): In this
experiment. the manipulator is commanded to maintain
a static end-effector position pEE = (xEE , yEE , zEE) =
(0.4, 0.0, 0.45)[m] from the robot’s base. An obstacle is pre-
sented moving towards the robot body at a rate of 0.15 m/s.
The obstacle starts at (0,−0.5, 0.6) and ends at (0, 0.1, 0.6).

2) Dynamic Robot, Dynamic Obstacle (DRDO): In this
scenario, the manipulator is commanded to move in a Carte-
sian circle with a radius of 0.25 m centered at (0.5, 0, 0.25)
moving counter-clockwise in the x and y directions while an
object moves near the EE. The robot moves at a maximum
speed of 0.3 m/s when there are no obstacles in the vicinity.
To trigger avoidance behaviors, an obstacle moves from
(0.45,−0.5, 0.45) to (0.45, 0.1, 0.45) at 0.15 m/s.
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Fig. 6: The manipulability at the control points (CP) and the end-
effector (EE) tracked across time for the five control points of
Flacco’s work (left), and the control point and end-effector of Ding
and Escobedo (right) Both graphs are constructed from the DRDO
experimental scenario.

V. RESULTS & DISCUSSION

In the following sections, we summarize the results ob-
tained after running the experiments in Section IV-B. We
demonstrate that we can effectively evaluate OACs based
on two simple experiments and four separate metrics, which
originate from our design considerations. We compare the
controllers based on these performance metrics and make
suggestions for directions of future work. Additional analysis
and real-time operation is detailed in the accompanying
video.

A. Manipulability scalar

The manipulability values for control points and EE are
shown in Figure 6 for the dynamic robot experiment. The
manipulability scalar values of Flacco’s control points are
smooth in both scenarios, as opposed to Ding and Escobedo.
We see an equivalent pattern for the static robot experiment.
In Figure 6 we can see that both Ding and Escobedo have
sudden changes in manipulability as the obstacle point moves
closer to the robot’s body. This is the result of a rapid change
of the control point position and a consequent change of the
movement restriction to a new part of the robot’s body. Any
discontinuity of control points can lead to undesirable move-
ments, as can be seen in the EE path for Ding in Figure 7.
Not only is the discontinuity sudden, but the transition is
between two points with drastically different manipulability
measures. Importantly, these points should not be treated
equally when applying movement restrictions: a point with
higher manipulability can likely avoid an obstacle without
effecting the main task. We conclude that information about
the current control point’s manipulability measure should be
used to ensure that a repulsive force is scaled accordingly.

B. Manipulability ellipsoid

Figure 8 shows the amount that each controller’s repulsive
vector aligns with the direction of the control point’s lowest
axial operability as calculated in Equation (19). This metric
is not directly taken into account for EE or control point
motion within any of the controllers, and is therefore useful
to compare how the robot’s ability to move is affected in a
configuration resulting from avoiding an object. Movement
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Fig. 7: The end-effector path of the robot as it is commanded by
each controller to travel in a circular path while being approached
by an obstacle. Both graphs are constructed from the DRDO
experimental scenario.
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Fig. 8: The proportion of the repulsive vector’s magnitude projected
onto the minimum dimension of the manipulability ellipsoid as per
Equation (19). In the left graph is from the SRDO scenario and the
in the right graph is from the DRDO scenario.

meant to avoid a collision can lead to undesirable robot
configurations that cannot be recovered from when an ob-
ject is present, because the control points are commanded
to move in a direction that is not feasible in its current
kinematic configuration. In Figure 8 when the majority of
the movement required to avoid a collision is along the
axis of minimum manipulability, we see a value near one.
This indicates that the control point is being commanded
to move in the direction of lowest manipulability. While
any control point can have a low manipulability measure
in a particular configuration, control points near the base of
the robot manipulator will always have low manipulability
because they are kinematically more constrained, as shown
in Figure 6. These control point locations can be seen in
Figure 1. Therefore, imposing constraints on the proximal
links of the manipulator naturally causes a mismatch between
the desired and achievable velocity. In other words, the robot
cannot physically move the proximal-link control points
beyond the manipulability defined by the ellipsoid. A lack
of motion at the control points can inhibit the main objective
function defined by Equation (3) and lead to an unsolvable
optimization formulation. To avoid unrealistic constraints,
control points and restrictions should not be placed near the
base of the manipulator.
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(b) Flacco
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(c) Ding
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(d) Escobedo

Fig. 9: Maximum jerk per second of experimental time plotted
for each joint of the robot arm. The spikes in jerk correspond to
avoidance behaviors in the DRDO scenario. (a) uses Equation (11)
with no added avoidance terms to follow the specified trajectory.

C. Motion Profiles

The jerk profiles capture how smoothly the robot moves
through space. Figure 9 shows the maximum jerk as the
robot moves in a circular path and an obstacle approaches the
EE. Without the obstacle, the robot’s acceleration does not
rapidl change. However, when approached by an obstacle,
the controllers impose a virtual force, altering the velocity.
These changes in velocity are apparent through jerk. The
measured discrete velocity is read from the Franka Panda
API and smoothed using a Savitzky-Golay filter to increase
the precision of the data without distorting the signal ten-
dency [21]. The gradient is then computed using second
order accurate central differences in the interior points. We
calculate the gradient twice to approximate jerk from the
velocity profiles. In Figure 9a, the “no obstacle” graph
incurs non-zero jerk, which is likely the baseline jerk of the
executed trajectory. Flacco (Figure 9b) successfully avoids
the obstacle despite showing slight increases in jerk during
avoidance behavior. Ding (Figure 9c) ran for 8 seconds until
the joints contorted into an undesirable configuration and
the robot entered a self-collision state. Escobedo (Figure 9d)
showed low jerk after 4 seconds because it slowed to a
stop by design as the obstacle approached the end-effector.
Based on Figure 9, it is apparent that the restrictions placed
on Ding and Escobedo do not result in smooth avoidance
behavior. Each controller’s jerk profile is unique in the joints
that exhibit jerky behavior. Comparatively, the joint jerk for
Escobedo q6 is less pronounced than both Flacco and Ding.
These jerk profile metrics indicate that adjusting the applied
forces in Equation (12) and Equation (15) is required to
smooth the robot motion profile. Furthermore, low jerk is
synonymous with low motor current, which must be required
to meet ISO safety standards for robot operation [19].

D. Virtual Constraints

In Figure 10 we plot the virtual repulsive force and min-
imum distance from obstacle to control point. The repulsive
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Fig. 10: Repulsive vector applied at the control point over time
(left). Minimum distance from obstacle to the control point overtime
(center). Minimum distance from the obstacle to the control point
over the repulsive force applied to the control point (right). Data
taken from the SRDO scenario.

forces are generated from each of the controller’s respective
avoidance equations. The repulsive forces in these graphs
should be designed and shaped for a particular usage and
verified in simple experimental scenarios, such as those intro-
duced in this work. For example, in Figure 10, Flacco sees a
sharp rise in repulsive force at 0.3 meters distance. This force
quickly reaches its maximum value which causes the robot to
quickly move away from an obstacle. While Flacco will try
to avoid nearby obstacles, that is not always the goal when
interacting around humans. In Escobedo, when an obstacle
approaches the EE, the repulsive force is mitigated by the EE
velocity scaling introduced in Equation (17). This particular
behavior was designed to avoid high velocities when a human
is interacting with a robot.

VI. CONCLUSIONS

This paper presents an evaluation framework for object-
aware controllers (OACs). Three design considerations (kine-
matics, motion profiles, and virtual constraints) are used as
assessment metrics in a set of experimental scenarios where
an obstacle enters the robot’s workspace and alters the robot’s
path. Three representative OACs are evaluated on a real robot
with dynamic virtual obstacles. It is demonstrated that, by
using our framework, we can see the following shortcom-
ings of the implemented OACs based on their experimental
comparison: First, OACs fail to effectively incorporate kine-
matic information about the specific robot embodiment as
part of their movement. Without kinematic properties, such
as manipulability, the robot can get trapped in unrealistic
constraints that impede its ability to function. Second, OACs
set discontinuous virtual constraints which lead to unsteady
motion profiles, which are highly undesirable for general
robot safety. Finally, OACs specify unweighted constraints,
which fail to prioritize robot behaviors in situations where
multiple objectives need to be achieved. We conclude that
using our framework to find a measurable and testable
interpretation of OACs is essential to their improvement
and accessibility. Matching measurable properties of OACs
with robot behavior advises future directions of research and
provides more confidence in adoption of these methods to
ensure robot safety. In the future, we envision the expansion

of this framework by the research community to build a
library of controller comparison benchmarks.
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