4480

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 2, APRIL 2022

PokeRRT: Poking as a Skill and Failure Recovery
Tactic for Planar Non-Prehensile Manipulation

Anuj Pasricha”, Member, IEEE, Yi-Shiuan Tung

and Alessandro Roncone

Abstract—In this work, we introduce PokeRRT, a novel motion
planning algorithm that demonstrates poking as an effective non-
prehensile manipulation skill to enable fast manipulation of objects
and increase the size of a robot’s reachable workspace. We showcase
poking as a failure recovery tactic used synergistically with pick-
and-place for resiliency in cases where pick-and-place initially fails
or is unachievable. Our experiments demonstrate the efficiency
of the proposed framework in planning object trajectories using
poking manipulation in uncluttered and cluttered environments.
In addition to quantitatively and qualitatively demonstrating the
adaptability of PokeRRT to different scenarios in both simulation
and real-world settings, our results show the advantages of poking
over pushing and grasping in terms of success rate and task time.

Index Terms—Dexterous manipulation, manipulation planning,
motion and path planning, nonprehensile manipulation,
kinodynamic planning.

I. INTRODUCTION

UMANS engage naturally in multiple forms of dexter-
H ous manipulation that involve grasping, pushing, poking,
rolling, and tossing objects [1]. Consequently, the development
of similar functionality in autonomous machines is an essential
milestone for robotics and an area of active research with funda-
mental work needed ahead [2]. However, the human manipula-
tion skill that has attracted the most attention from roboticists is
prehensile manipulation, or grasping. Manipulation by grasping
is attractive primarily because, once an object is grasped, it gen-
erally does not need to be tracked over time and uncertainty on
its state is reduced. However, grasping is limited in capability by
i) reachability of the robot arm, ii) mechanical design limitations
of the end-effector, iii) physical properties of the object being
manipulated, and iv) accuracy of the perception system.

Non-prehensile manipulation (i.e., any kind of manipulation
not involving grasping, hereinafter referred to as NPM) offers
a complementary solution to prehensile manipulation by sig-
nificantly expanding the size (intended as the set of reachable

Manuscript received September 9, 2021; accepted January 13, 2022. Date of
publication February 7, 2022; date of current version February 25, 2022. This
letter was recommended for publication by Associate Editor S. Thomas and
Editor S. J. Guy upon evaluation of the reviewers’ comments. This work was
supported by the Army Research Laboratory under Grants W911NF-21-2-0290
and WI11NF-21-2-0123. (Corresponding author: Anuj Pasricha.)

The authors are with the Department of Computer Science, University of
Colorado Boulder, Boulder, CO 80309 USA (e-mail: anuj.pasricha@colorado.
edu; yi-shiuan.tung@colorado.edu; bradley.hayes@colorado.edu; alessandro.
roncone @colorado.edu).

This letter has supplementary downloadable material available at
https://doi.org/10.1109/LRA.2022.3148442, provided by the authors.

Digital Object Identifier 10.1109/LRA.2022.3148442

, Member;, IEEE, Bradley Hayes ", Member, IEEE,

, Member, IEEE

- POk
e Push
=P Pick-and-Place

Fig. 1. This work demonstrates poking as a skill and a failure recovery tactic to
increase the portfolio of capabilities at the robot’s disposal. Here, an object (blue)
is located in an obstacle-rich (red) workspace with non-overlapping reachable
regions for each robot defined by beige and green shading. The first robot
manipulates the object into the green region successfully via poking (path shown
in green), but fails to do so via pushing or grasping (paths shown in orange and
purple, respectively).

configurations) and dimensionality (intended as the number of
degrees of freedom) of the operational space of even the simplest
robot manipulator [3]. In other words, NPM can be used to
manipulate objects when conventional grasping-based manip-
ulation is infeasible or unnecessary. Realistic robot applications
might expect the robot to operate in dense clutter, in the presence
of occlusions, or in ungraspable configurations—for example,
the target object is in a pose that is not directly reachable by the
end-effector or the target object is too large or too heavy. These
applications may result in failure modes for robot operation
through traditional grasping. Consequently, in such situations
it is beneficial to complement the robot’s skillset with NPM
primitives. Indeed, NPM can be used both as a skill and a
failure recovery mechanism, which points to the versatility of
this paradigm.

In this work, we demonstrate the utility of NPM through
poking, a skill that allows fast object manipulation and expands
the size of a manipulator’s reachable workspace. The basic idea
behind this work is detailed in Fig. 1. Poking is a NPM primitive
wherein a robot end-effector applies an instantaneous force to
an object of interest to set the object in planar translational and
rotational motion (impact phase). The object eventually slows
down and comes to rest due to Coulomb friction (free-sliding
phase). Poking has a multitude of desirable properties that
makes it complementary to grasping and serves as a generalized

2377-3766 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on March 02,2022 at 06:53:18 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0597-3162
https://orcid.org/0000-0002-8159-5047
https://orcid.org/0000-0002-0723-1085
https://orcid.org/0000-0001-7385-1875
mailto:anuj.pasricha@colorado.penalty -@M edu
mailto:anuj.pasricha@colorado.penalty -@M edu
mailto:yi-shiuan.tung@colorado.edu
mailto:bradley.hayes@colorado.edu
mailto:alessandro.penalty -@M roncone@colorado.edu
mailto:alessandro.penalty -@M roncone@colorado.edu
https://doi.org/10.1109/LRA.2022.3148442

PASRICHA et al.: POKERRT: POKING AS A SKILL AND FAILURE RECOVERY TACTIC FOR PLANAR NON-PREHENSILE MANIPULATION

form of pushing where applied impulse forces are low [4], [5].
These characteristics make poking especially suitable for indus-
trial settings where robots need to operate in their delineated
workspaces alongside other robots or humans while still being
able to pass objects. Additionally, in logistics or e-commerce
settings, poking can be used for either stowing objects in boxes
or in synergy with pick-and-place to optimize operations by
increasing speed and coverage area. In this paper, we design
and implement two closed-loop, kinodynamic, sampling-based
planners called PokeRRT and PokeRRT* which decouple skill
modeling and path planning and specifically focus on leveraging
the following advantages of poking over pushing and grasping:
i) it does not require constant contact between the manipulator
and the object, therefore greatly expanding the size of the
manipulator’s workspace, ii) it does not impose restrictions on
the shape or size of objects that can be manipulated, and iii)
it is inherently faster and therefore capable of covering large
distances in short periods of time.

After discussing related work (Section II), we present
PokeRRT which leverages a simulation engine to generate
a collision-free path between two points in the object con-
figuration space (Section III). We conclude with an experi-
mental validation (Section IV) and discussion (Section V) of
PokeRRT in both simulated and real-world settings.

II. BACKGROUND AND RELATED WORK

Research in non-prehensile manipulation dates back to the
90s [3], [6], [7], with the vast majority of prior work leveraging
heuristics or analytical models based on simplifying assump-
tions. Related work has focused on skills such as throwing [8],
poking [4], and pushing [9]-[11]. More recently, pushing ma-
nipulation has received increased attention due to availability
of large-scale datasets and the inherent controllability of the
skill [12]. Pushing operates under the quasistatic assumption
(i.e., the inertial effects of robot—object and object—environment
interaction are ignored) to reduce modeling complexity, thereby
limiting robot velocities and accelerations. On the contrary,
poking must plan around the non-negligible effects of inertial
forces: the object continues moving after robot—object contact
is broken, thus allowing for faster planar manipulation of ob-
jects. Past work in pushing manipulation incorporates simula-
tion and analytical models in a motion planning loop to get
the next feasible state [13], [14]. Additional contributions in
push modeling involve combining object state estimation with
affordance prediction from image data to determine contact
points for achieving the optimal push [15] and creating a deep
recurrent neural network model to model push outcomes for a
variety of objects [16]. However, both approaches use a greedy
planner operating in obstacle-free environments. In this work,
we propose a sampling-based kinodynamic framework that is
capable of planning dynamic collision-free paths in the object
configuration space.

Past work on sampling-based planning techniques for non-
prehensile manipulation involve kinodynamic approaches to re-
arrangement planning and whole-arm manipulation. This work
is constrained by the quasistatic assumption, thereby limiting

4481

object manipulation speed through the use of non-dynamic
primitives [17]. However, when operating in a dynamic regime,
lack of kinematic modeling of the robot and lack of contact mod-
eling between the robot arm and environmental objects may re-
sult in unusable actions explored during the planning phase [18].
These approaches also employ an open-loop paradigm and do
not take robot, sensing, and model uncertainty into account.
Moreover, open-loop kinodynamic planners that consider un-
certainty in the planning process may generate conservative
plans that do not exploit robot and object dynamics to their full
extent[19]. Our approach uses a simulation engine that considers
robot kinematics and contact while planning and operates in a
closed-loop manner, replanning if the resultant pose is outside a
certain threshold.

In all, evidence from prior work suggests that poking—
sometimes referred to as “releasing” or “impulsive
manipulation”—is a relatively unexplored primitive. Analytical
models for poking dynamics are restricted to rotationally
symmetric objects or situations where pusher—object contact
can be geometrically modeled [4], [20]. The need for specialized
impulse-delivery apparatus to achieve poking is explored in [4].
This makes planar manipulation of objects cumbersome due to
the manual relocation of the apparatus required. In this work,
we use a standard open-chain robot arm equipped with an
electric parallel gripper to deliver impulses using joint space
velocity control.

In order to generate impulse-based action paths that obey
the robot’s kinematic constraints and produce feasible object
motion, we use a PyBullet [21] simulation environment as the
forward physics model in the planning loop. While simulation
may not accurately capture real-world dynamics [22], the closed-
loop nature of our planning framework compensates for this ap-
proach. This effective use of simulation captures essential char-
acteristics of robot and object dynamics at faster than realtime
speeds and in a safe manner without inducing significant wear-
and-tear caused by dynamic trajectory execution on a real robot.

III. METHODS

In this section, we present an overview of the proposed
approach for poking (Section III-A), its characterization in a
simulated environment (Section III-B), and our motion planning
algorithms, PokeRRT and PokeRRT¥*, that leverage the simu-
lated environment to plan a collision-free path for the target
object through its configuration space (Section III-C). We also
introduce empirically-driven heuristics to PokeRRT that leverage
the large and quick displacement property intrinsic to poking
manipulation.

A. Formalization of the Poking Motion Primitive

Poking manipulation is modeled as a process composed of
two phases: i) impact, where the robot end-effector makes in-
stantaneous contact with the object; and ii) free-sliding, where
the object slides on a planar surface and comes to a stop due
to Coulomb friction. As detailed in Fig. 2c, two parameters
are required to describe the first phase of poking: the point of
contact p. (i.e., where on the contour of the object to strike),

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on March 02,2022 at 06:53:18 UTC from IEEE Xplore. Restrictions apply.

4482

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 2, APRIL 2022

((a) Striking Point) (~ (c)Forward) (d) Pick Best Node)
Selection Simulation
qrand qrand q
@E rand
[)
[)
[
[11) J
(b) Robot
Velocity Joint Velocity Action
Magnitude F eas1b111ty Check Selection
Sampling @
J\ oo AN J

Fig. 2.

Path planning for poking consists of 2 steps: action sampling (a, b) and graph expansion (c, d). (a) Points are sampled uniformly on the object contour

(red) and filtered through a conical region originating from the target position (green). Striking points are generated by extending away from contour points in
the normal direction. (b) End-effector velocity magnitudes are sampled for each striking point and filtered out if joint velocities are infeasible due to mechanical
limitations of the robot. (c) Feasible actions are applied in simulation to get resultant poses. (d) The resultant pose closest to the target position is added to the

planning graph.

and the magnitude of the impact velocity ||Ugg||. Slippage
at the contact point between the end-effector and the object
may lead to non-linearities; therefore, we fix the direction of
Upp as being normal to the object’s contour. Importantly, in
order to apply an instantaneous force, the robot must come to a
complete halt upon contact with the object. Therefore, collision
between the end-effector and the object is treated as an elastic
collision. The motor torques applied to stop the end-effector
upon contact prevent the impulsive interaction from being truly
elastic; however, this can be safely ignored by stopping the
end-effector slightly past the contact point.

Given a uniform-density object of mass m with a coefficient
of friction p whose center of mass starts in an initial planar pose
q; = (xi,vi,0;) and the control parameters (see Fig. 2c) that
determine the contour of the object to strike (p.) and the velocity
magnitude (||Uzz||), we can solve the second phase of poking
and determine the final pose of the object ¢ = (z,yy,0y)
using a physics simulation engine.

B. Simulation Model for Poking

In order to understand the effects of impulsive forces on
objects, we use the PyBullet physics simulation engine [21].
PyBullet models rigid body dynamics by performing numerical
integration over time with equations of motion to solve for object
position and velocity. Joint constraints, contact forces, and fric-
tion, in addition to external forces such as gravity, are taken into
account in the forward dynamics solver of the engine and mod-
eled as constraints in a Linear Complementarity Problem (LCP).

The main point of interest when modeling impulsive inter-
actions is contact force. In the context of poking, contact is
primarily dominated by frictional interactions between i) the
robot end-effector and the object of interest, and ii) the object
and the environment (i.e., the object’s planar support surface
and surrounding obstacles). Analytical models for contact make

simplifying assumptions that do not fully represent the complex-
ity of real-world dynamics, including the nonlinear nature of
friction and actuator degradation and latency. Additionally, they
do not generalize well to a diverse set of objects. Conversely,
learning-based approaches, while capable of achieving gener-
alization and modeling uncertainty and complexity, are data-
inefficient. Collecting abundant and task-representative data in
real-world robotics is expensive with regard to the time taken
and the wear-and-tear caused on a real robot through repetitive,
and potentially, high-acceleration trajectory executions such as
those characteristic to poking manipulation. Executing such tra-
jectories and modeling collisions along the action path with the
object and the environment is therefore far safer in simulation.

While simulation does not perfectly capture the inherent
complexity and stochasticity of real-world contact dynamics
due to the simplistic nature of the underlying analytical models
used, it nonetheless provides a good balance between pure
learning and analytical models by ensuring interaction modeling
is both cheap and safe while encapsulating the essential char-
acteristics of robot—object and object—environment interactions.
The closed-loop nature of our proposed motion planner also
compensates for any inaccuracies in simulation modeling while
executing poke plans in the real-world. That is, if a resultant pose
violates a predefined object pose threshold, we compute a new
poke plan from the current object pose to the goal region. This
crucial feature allows our planner to plan feasible poke paths in
simulation and execute them in the real-world.

C. Motion Planning for Poking

Using simulation as the forward physics model in our planning
loop, we design and implement PokeRRT that takes advantage
of the inherent speed and efficiency of poking manipulation.
This global path planning approach leverages goal and ob-
stacle information in object configuration space to introduce

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on March 02,2022 at 06:53:18 UTC from IEEE Xplore. Restrictions apply.

PASRICHA et al.: POKERRT: POKING AS A SKILL AND FAILURE RECOVERY TACTIC FOR PLANAR NON-PREHENSILE MANIPULATION

a bias into motion planning and to keep the sampling space
low-dimensional to ensure fast planning.

1) Object Configuration Space: Our planner operates in C,
the continuous (z, y, 8) configuration space of the object. = and
y are confined by the limits of the planar workspace, whereas 6
is defined in the range [—180°, 180°).

2) Action Sampling: The proposed planner decouples skill
modeling and object path planning to allow for the evaluation
of multiple skill models which directly improve planning out-
comes. We achieve this through an action-oriented approach by
employing a series of filtering steps to pick a set of valid actions
Qyatid = (Pe, ||UEE||) to apply at a given object configuration
q. A sampling approach that yields actions which can be simu-
lated in a physics engine is desirable since inverse modeling of
frictional contact and object motion may either be intractable or
not guarantee feasible robot motion.

To achieve the correct direction of motion, candidates for
object contour points that are ideal for impact must lie on
the side nonadjacent to the target object position. Given an
object configuration ¢, contour points Peontowr are chosen as
acceptable candidates if they lie within a cone originating from
a target pose ¢,qnq (Fig. 2a). The target pose is sampled during
path planning as described in Section III-C3. For each candidate
contour point p. € Peontour, & Striking point p, is computed
at a fixed distance, degziend, from p. in the normal direction
away from the object (Fig. 2c). The robot engages in joint space
velocity control to apply a poke in its operational space by
moving from p, to p,. at velocity ¥ . Collision-free robot joint
configurations, 8 and 6., for both ps and p.. are computed using
TRAC-IK [23]. Since impactful contact is a core requirement for
successful manipulation, we do not check for collisions between
the robot end-effector and the object. A final filter is applied to
seeif @, = J! (0.)UgE, i.e., the joint velocities at 8. given the
given operational space velocity Uz g, satisfies the joint velocity
thresholds for the robot, (émm, émaz> (Fig. 2b).

The kinematic feasibility check along the entire path from
0, to 0. is provided by the simulation engine, i.e., the success
or failure of executing the sampled action in simulation will
determine whether our planner adds this action to the planning
graph. Given this process for generating feasible actions that
move the object from its current position towards the target
position, we build a global path planner to generate an action
path through object configuration space from the object’s current
pose to task goal region.

3) Path Planning: In this section, we introduce a novel mo-
tion planner named PokeRRT; it generates a graph of feasible
robot actions in the object configuration space. With the afore-
mentioned aq1:4 as a set of valid control parameters, explo-
ration properties of the rapidly-exploring random tree (RRT)
algorithm [24] are leveraged to generate a planning graph. The
integration of poking-specific control inputs to RRT ensures that
all nodes in the planning graph are achievable configurations,
while the RRT algorithm ensures exploration bias to the largest
Voronoi regions of the configuration space. This bias is espe-
cially central to poking manipulation due to its inherent ability
to cover large distances in the operational space.

4483

Algorithm 1: PokeRRT*.

Input: Start Node gst¢qrt, Goal Region ngal’ Neighborhood
Radius 7, Object Configuration Space C, Poke Dataset D
Output: Poke Path P
1 G.add_vertex(qstart);
2 while not GOAL_REACHED(G, Q 4041) do
3 4rand = RAND(C); Gnear = NEAREST(g,qnd, g
= qnear + SAMPLE_DISP(D, Grand);
argmin RADIAL_NN(q}, ¢, G, 7):
N_POKES
Gnew = GET_BEST_RESULT(gmin, q;leu;; g);
G.add_vertex(gnew); G.add_edge(qmin; new);
foreach ¢ € RADIAL_NN(gnew,G,r) do
if N_POKES(qnew) + 1 < N_POKES(q) and
IS_LEAF_NODE(q) then
10 G.remove_edge(PARENT(q), q);
u Gresuit = GET_BEST_RESULT(gnew, g, 9);
12 G.add_edge(qnew; Gresult);
13 P= BACKTRACK(Q, Gstart, ngal);
14 return P

/
4 qTLE”UJ
5 qmin =

e ® 9 &

A new node g4, 4 1s set as the goal node with probability pp;qs,
otherwise ¢,4,4 1s randomly sampled in the object configuration
space. Actions from a.qi;q are applied from the nearest graph
node ¢y eqr towards g,qnq (Fig. 2¢) and the resultant node q,cq
that minimizes the distance to ¢,qnq is added to the graph
(Fig. 2d; GET_BEST_RESULT() in Algorithm 1). Resultant
poses are added to the planning tree until the task goal region
Qgoal is reached, at which point the path from gg;qr¢ t0 Qgoar in
the planning tree is extracted by backtracking (Algorithm 1, Line
13). PokeRRT does not find the absolute least-cost path since
RRT is not asymptotically optimal by nature [24]. The current
implementation operates in a closed-loop paradigm—we replan
on the fly if the resultant pose after a poking action is outside
a specified threshold to compensate for inaccuracies of the
simulation poking model and collisions between the object and
environmental obstacles. The replanning threshold for an object
is decided based on a collection of pokes executed in simulation
and the real-world, i.e. the average object resultant pose error
caused by the sim2real gap serves as an empirical estimate of the
threshold. Therefore, this measure encompasses any uncertainty
resulting from sensor, actuation, and skill model noise. The
replanning strategy is particularly important for poking since
frictional interactions between the object and the support surface
are stochastic in nature and motor slippage and nonlinearities in
joint modeling in the real-world can induce noise in robot—object
interaction. Additionally, unlike pushing and grasping, poking
lacks full controllability which induces further uncertainty on the
final object pose. Using this planner, poking can be used both as a
skill and as a failure recovery tactic and can be shown to operate
faster and in a more diverse set of scenarios than pushing or
grasping. Since poking is inherently capable of covering larger
distances in short periods of time due to high impact interactions,
we can leverage this insight and add extensions to PokeRRT to
plan sparse paths in object configuration space.

4) Online Path Smoothing: To minimize the number of pokes
and enable poke planning to cover large distances, we combine
empirically-derived heuristics with insights from RRT* [25] to

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on March 02,2022 at 06:53:18 UTC from IEEE Xplore. Restrictions apply.

4484

develop PokeRRT* (Algorithm 1). RRT* allows for the discov-
ery of new lower-cost paths until the goal region is reached
by introducing two additional steps to RRT—choose-parent and
rewiring. In the context of PokeRRT%*, choosing the best parent
node ¢,;,, replaces the edge from gpeqr tO @pneqw With the edge
from @55, tO @new- Planning time for PokeRRT* can be reduced
by using a data-driven heuristic to generate ¢/, ,,—instead of
applying actions from @yq1:d to get ¢,.,,» we sample Ag from
a range of displacements from a dataset of random pokes D.
Q)rerp 18 then computed as ¢peqr + Aq in the direction of ¢,qnd
(Algorithm 1, Line 4).

Then @4y, is chosen as the neighbor within radius r of ¢/,..,
that minimizes the number of pokes from gs¢qrt t0 ¢, (Algo-
rithm 1, Line 5). Radius r is selected empirically as the average
displacement of the object in the dataset P. The best action from
Qmin 10 @4, 18 recomputed by sampling actions from @yq14id to
make sure each edge in the graph is a valid action. Resultant pose
Gnew 18 chosen as one that minimizes the distance to ¢/, - ¢new
and the edge from ¢,in tO @new are added to the graph. In the
rewiring step, the neighborhood of g;,¢,, is rewired to minimize
the number of pokes along the path from qs;q.+ through e
to a neighboring leaf node (Algorithm 1, Lines 8—12). Note that
PokeRRT* does not use the extension to RRT* that exploits the
anytime nature of RRT* to continuously improve path quality
by allocating planning time [26]—choose-parent and rewiring
are the primary modes for online path sparsification. As a
result, PokeRRT* leads to fewer pokes in the planned path than
PokeRRT, thereby taking advantage of poking’s core compe-
tency of allowing larger displacements.

IV. EVALUATION

In this section, we qualitatively and quantitatively evaluate
PokeRRT and PokeRRT* in simulation and the real-world under
various environment setups.1 ‘We measure success rates, task
times (in seconds), and number of executed actions in the
final planned path for both motion planners. Success rates are
averaged across all scenarios for a given planner, whereas task
times and number of executed actions are presented separately
for each scenario. Task time is defined as the sum of planning,
execution, and replanning times. Object start pose is kept fixed
across various trials to aid reproducibility of results. Simulation
and real-world results are averaged over 250 and 10 trials,
respectively. Collectively, our results demonstrate that PokeRRT
and PokeRRT* indeed enable fast and successful manipulation
of objects in conditions where push planning and pick-and-place
fail.

A. Experimental Setup

1) Scenarios: We test multiple algorithms for poking, push-
ing, and grasping manipulation in six scenarios (Fig. 3). Our
motivating application is the concurrent operation of two robots
with potentially non-overlapping reachable regions located in
adjacent workcells on a factory floor. Therefore, the objects

'Links to our code, videos, and demonstrations of the experiments are
available here: https://hiro-group.ronc.one/research/poke-rrt-icra-22.html.

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 2, APRIL 2022

Scenario Description | Poke | Push | Grasp

S1 No Obstacles v v v

S2 2 Obstacles v v v

S3 4 Obstacles v v v

S4 Wide Object v v

S5 Tunnel v v

Sé6 Shared Workspace v
S1 S2 S3 \

| | I | I

S4 S5 S6

Fig. 3. The robot successfully pokes the object (blue) from its reachable
workspace (orange) to the goal region (green) in all scenarios while avoiding
obstacles (red). PokeRRT, PokeRRT*, and baseline algorithms are evaluated in
6 scenarios—no obstacles (S1), 2 obstacles (S2), 4 obstacles (S3), wide object
(S4), tunnel (S5), and non-overlapping shared workspace (S6). The robot is
unable to i) push or pick-and-place in S6 due to limited robot reach, ii) push in
S5 due to workspace obstruction in the action path, and iii) pick-and-place in
S4 due to object being wider than gripper width.

being manipulated must be accessible by both robots to enable
successful collaboration. Given this motivation, scenarios are
designed to test the flexibility of the planner in generating plans
for manipulating the object in a planar workspace from a fixed
start pose to a goal region, which represents the workspace of
a second robot. To ensure that object—obstacle collisions are
handled robustly through the replanning strategy, we enforce
the following properties in our scenarios: i) the objects used in
each scenario are rigid and therefore retain their shape across
multiple trials and ii) obstacles are fixed to the table so that
collisions do not change the planning configuration space.

Scenarios 1-3 (S1-S3 in Fig. 3) are designed to test baseline
manipulation capability through uncluttered (S1) and cluttered
(S2, S3) environments. S2 and S3 contain 2 and 4 obstacles, re-
spectively, at fixed poses in the shared robot workspace. The ob-
jectbeing manipulated has size [9, 14, 5] cm and mass m = 87 g.
Poke planning, push planning, and pick-and-place will all work
in these scenarios since the goal region overlaps with the first
robot’s reachable workspace. Scenario 4 (S4 in Fig. 3) contains a
bigger cuboid object of size [11, 18, 11] cmand massm = 112 g
in an obstacle-free workspace. Poke planning and push planning
will work in this scenario, however pick-and-place will not since
gripper width (10 cm) is smaller than the minimum dimension
of the cuboid. This scenario represents situations where object
properties are incompatible with robot kinematics, i.e., if the
object of interest is too heavy or too wide to be grasped or if the
end-effector is malfunctional, and the robot needs to formulate
an alternate manipulation plan.

Scenario 5 (S5 in Fig. 3) presents two work cells with a tunnel
in the center of the table. The first robot cannot push the object
to the second robot because the end-effector will collide with
the divider along its action path. However, poke planning will

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on March 02,2022 at 06:53:18 UTC from IEEE Xplore. Restrictions apply.

https://hiro-group.ronc.one/research/poke-rrt-icra-22.html

TABLE I

PASRICHA et al.: POKERRT: POKING AS A SKILL AND FAILURE RECOVERY TACTIC FOR PLANAR NON-PREHENSILE MANIPULATION

4485

TASK TIMES [MEAN (STDDEV)] AND SUCCESS RATES FOR VARIOUS PLANNING ALGORITHMS IN SIMULATION. RESULTS ARE AVERAGED ACROSS 250 TRIALS

Task Time [seconds] Success Rate
Planner S1 S2 S3 S4 S5 S6 S1 - S6
PokeRRT* 46.43 (21.67) | 212.74 (100.01) | 232.42 (118.63) | 70.47 (38.82) 132.62 (98.27) 130.01 (84.05) 0.87 (0.31)
PokeRRT 49.69 (21.11) | 196.54 (124.61) | 167.55 (138.63) | 64.14 (52.45) | 116.35 (89.72) | 171.77 (103.21) 0.88 (0.31)
LI-PokeRRT* 169.87 (71.28) 378.90 (122.21) 346.70 (111.71) 165.91 (44.87) N/A N/A 0.53 (0.28)
LI-PokeRRT 123.71 (36.72) | 328.66 (107.18) | 322.28 (138.05) | 135.80 (32.91) N/A N/A 0.63 (0.18)
Push Planner 122.68 (47.07) | 284.78 (104.40) 249.32 (68.30) 117.58 (67.05) N/A N/A 0.44 (0.26)
[Pick-and-Place | 1629 3.76) [17.71 3.81) [16.14 (3.25) | N/A [19.15(499) | N/A [0.67 (0.00) |
TABLE II

succeed due to the short duration of robot—object contact. The
first robot is able to grasp the object over the divider in our
setup but for larger dividers such as a screen, pick-and-place
will fail. Scenario 6 (S6 in Fig. 3) contains an obstacle-free
workspace with non-overlapping reachable regions for each
robot. The first robot is able to poke the target object to the
second robot’s reachable workspace, but cannot push or pick-
and-place due to limited reachability. Since pushing operates
under the quasistatic assumption, it requires constant contact
between the robot end-effector and the object being manipulated
and therefore, manipulation is limited by robot kinematics and
reachability. This scenario represents cases where task success
is limited by the robot’s kinematic characteristics, i.e., if the goal
pose is outside the robot’s reachable workspace.

2) Parameters: The action vector ayaiid = (Pe, ||UVeE||)
for our proposed motion planners is generated at runtime. Con-
tour points p. close to object corners are ignored for clean
pokes. The velocity magnitudes |[Ugg|| are sampled in the
[0.3, 1.0] m/s range to increase likelihood of robot joints achiev-
ing the commanded operational space velocities. Goal region is
defined as the workspace of the second robot, determined as the
frequency of inverse kinematics poses achievable on discretized
xy-locations on the planar support surface of the object. The
empirically-determined replanning threshold is 5 cm and 10°.

3) Algorithms: PokeRRT and PokeRRT* are compared
against several baseline approaches. To evaluate pushing, we
use the Two-Level Push Planner presented in [13] since it also
uses simulation in the planning loop to get the next feasible
environment state. This work integrates simulation-based for-
ward modeling with sampling-based motion planning to explore
the space of feasible pushing actions required to get an object
from start to goal. Our baseline approaches, Low-Impulse (LI)
PokeRRT and Low-Impulse (LI) PokeRRT*, are designed to
show that poking is a more fundamental manipulation skill and
encompasses pushing if the applied impulse magnitudes are kept
small. They operate similarly to PokeRRT and PokeRRT* but
with ||Tgg| = 0.2 m/s to simulate pushing. Any replanning
for a given planner is done using that same planner. Lastly,
Pick-and-Place is performed in an open-loop manner with pre-
defined grasps for known objects. An experimental trial fails if
the planner does not find a valid plan to the goal region in 240
seconds or if the object falls off the table during execution.

B. Simulation Experiments

Table I shows the task times and success rates for
Pick-and-Place and five non-prehensile manipulation
planners—PokeRRT*, Low-Impulse PokeRRT*, PokeRRT,

NUMBER OF EXECUTED ACTIONS [MEAN (STDDEV)] IN THE PLANNED PATH FOR
VARIOUS ALGORITHMS IN SIMULATION

Number of Actions in Execution Path
Planner ST Sz 3 Sa S5 56
PokeRRT* ((3):33) (‘;Zgi) (‘1‘:33) (1‘133) (if);) (i:gg)
PokeRRT (%g) (52;:&2:;) (;(9)2) (g:;) (1‘233) (3:411;
LI-PokeRRT* (126,'2433) (22%'2267) (13'5(20) (llg_ff) NA | NA
LI-PokeRRT (119 15018) (119_ '6642) (229'17;) (13 :5398) NA | NA
Push Planner (?Zé) (?g}) (Z?g) (?g?) N/A N/A
‘ Pick-and-Place ‘ ((1):88) ‘ ((1):88) ((1]:88) N/A ‘ ((1):88) ‘ N/A ‘

Low-Impulse PokeRRT, and Two-Level Push Planner. Results
are averaged over 250 trials. PokeRRT and PokeRRT* successful
in all scenarios while Two-Level Push Planner fails in S5 and
S6 and grasping fails in S4 and S6. Two-Level Push Planner
has a low overall success rate (44%), as expected based on the
reasons presented in Section IV-Al.

PokeRRT and PokeRRT* task times are lower than Tivo-Level
Push Planner task times across all scenarios. Standard devia-
tions are high due to the sampling-based nature of our planners.
The task time for S4 is greater than for S1 since the object used
in S4 is not only bigger in size but also larger in mass than
the object used in S1, therefore poke displacements are lower
given the same contact force. Pick-and-Place has the lowest
task time because it does not involve planning in the object
configuration space—the robot moves to object pose, grasps,
and moves to goal pose, so only a single action is executed.
Low-impulse poke planners have large search trees due to shorter
displacements of the object. This results in longer planning times
and also lower success rates. Task times are higher for obstacle
scenarios because the robot end-effector is more likely to run into
obstacles and collision checking is a computationally expensive
procedure.

Pick-and-Place succeeds in simulation for S1, S2, S3, and S5
because there is no uncertainty in object pose so manipulation
consists of moving to a predefined grasp configuration and
moving to the goal pose. We intentionally set up the start and
goal configurations for Pick-and-Place to create an upper bound
for comparison with our planners. For the reasons presented in
Section IV-A1, it fails in S4 and S6. Low-impulse poke planners
have higher success rates than the push planner because the
shorter robot control trajectories corresponding to poking result
in fewer obstacle collisions. Low-impulse poke planners fail in
S5 and S6 because the pokes are not strong enough to pass the

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on March 02,2022 at 06:53:18 UTC from IEEE Xplore. Restrictions apply.

4486

(@

) | @

Fig. 4. Two robots with non-overlapping reachable regions are shown (S6).
Robot A (left) applies 2 pokes to manipulate the object to Robot B’s (right)
workspace (a-d). Robot B then grasps the object and places it in a bin that is not
reachable by Robot A (e-f).

workspace divider or cross into the second robot’s reachable
workspace.

Table II presents the number of executed actions in the final
planned path for multiple planning algorithms across several
scenarios. It indicates that the number of executed actions is
lower for PokeRRT and PokeRRT* compared to Two-Level Push
Planner, showing that poke planners can displace the object
further with fewer actions in less time. Notably, the number of
actions is lowest for PokeRRT*, thereby supporting our claim
that minimizing the number of poking actions exploits the
large displacement property of poking manipulation. However,
the task time is similar to that of PokeRRT since PokeRRT*
introduces the choose parent and rewiring steps to PokeRRT,
which increases the number of actions sampled while planning.
In general, PokeRRT is preferable in scenarios with obstacles—
even though the number of pokes for PokeRRT* is lower (i.e.,
faster overall execution), a greater percentage of time is spent
on resampling actions in PokeRRT*, most of which lead to
object—obstacle collisions. Task times for low-impulse poke
planners are comparable to Two-Level Push Planner, supporting
our claim that pushing is a limiting case of poking where applied
impulses are low in magnitude.

C. Real-World Experiments

We evaluate PokeRRT*, PokeRRT, Two-Level Push Planner,
and Pick-and-Place for a subset of the scenarios in the real-world
(Table IIT). The task times and the number of actions executed
in the real world are slightly higher than in simulation. This is
expected because the plan is generated in simulation and simu-
lation does not fully capture the complexities of the real-world
environment. Therefore, replanning is required for real-world
plan execution which leads to an increase in task times. As shown
in Fig. 5, execution times for poke planners are lower than for
the push planner indicating that poke planning leads to faster
object manipulation than push planning. Additionally, the re-
planning time for push planning is higher than for poke planning
since simulating push actions to generate the planning graph
takes more computational cycles than simulating instantaneous
contact for poke actions. However, the number of replans for
push planning is lower than for poke planning thereby pointing
to the inherently uncontrollable nature of poking, which may

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 2, APRIL 2022

B Pick-and-Place Bl |nitial Planning Time

200 | @@ Two-Level Push Planner | imm Replanning Time
w79 PokeRRT

I Execution Time

B0 PokeRRT* mm N/A

— 150
12}
°
=

S 125
3

2 100
E

& 75

50

25

0

sS4 S5 S6
Fig. 5. A breakdown of task time as the sum of initial planning, replanning,

and execution times is presented for various planners in the real-world. A single
bar indicates total task time. Long red bars indicate cases where tasks cannot
be solved. Overall, poke planning demonstrates lower execution and replanning
times than push planning.

not be desirable in certain situations (Table III). Collectively,
real-world results align with the results from simulation.

Fig. 4 depicts a failure recovery case for S6 where failure to
grasp or push to the second robot’s reachable workspace does
not result in task failure—the first robot pokes the object to
the second robot’s reachable workspace, allowing the second
robot to successfully manipulate the object. Additionally, while
grasping is a faster form of manipulation with fewer actions
than poking or pushing, it has a lower overall success rate
(27%) than pushing (33%) due to perception inaccuracies. This
discrepancy between simulation and real-world results points
to a fundamental difference between grasping and poking or
pushing—sensing uncertainty leads to total failure in grasping,
whereas for poking it leads to just partial failure as our presented
planners operate in a closed-loop manner.

V. CONCLUSION AND DISCUSSION

In this work, we demonstrate poking manipulation as a
fundamental motion primitive that complements grasping and
encompasses pushing in terms of capability. Our work is the
first to show qualitative and quantitative results for multiple
test conditions to demonstrate the flexibility and robustness of
poking as a skill through PokeRRT. We present the task times,
number of executed actions, and success rates of our proposed
motion planners and four baseline algorithms across six different
scenarios. The results demonstrate the strengths of the poking
motion primitive: poking is not as limited by robot reachability,
robot end-effector design, object properties, and inaccuracies
due to perception as grasping or pushing. Success rates are
higher for poking-based planners than for the push planner
indicating that poking expands the size of reachable workspace
by its ability to execute longer object displacements using shorter
robot end-effector trajectories. Task times for computed plans
are significantly lower for poking than for pushing, indicating
that poking allows fast object manipulation because it does not
face the same constant-contact restriction as pushing. PokeRRT

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on March 02,2022 at 06:53:18 UTC from IEEE Xplore. Restrictions apply.

PASRICHA et al.: POKERRT: POKING AS A SKILL AND FAILURE RECOVERY TACTIC FOR PLANAR NON-PREHENSILE MANIPULATION

TABLE III
TASK TIMES, NUMBER OF ACTIONS IN EXECUTED PATH, AND SUCCESS RATES FOR VARIOUS PLANNERS IN THE REAL-WORLD.
RESULTS ARE AVERAGED ACROSS 10 TRIALS

4487

Planner PokeRRT* PokeRRT Two-Level Push Planner | Pick-and-Place

S4 69.58 (26.15) 83.55 (29.59) 120.21 (47.09) N/A

Task Time [seconds] S5 127.45 (57.80) 148.55 (86.23) N/A 20.31 (3.21)
S6 182.03 (122.77) | 157.03 (94.41) N/A N/A
S4 5.27 (2.00) 6.20 (1.60) 6.00 (1.26) N/A

Number of Actions S5 5.12 (1.05) 6.67 (1.56) N/A 1.00 (0.00)
S6 6.11 (1.91) 6.88 (2.15) N/A N/A
S4 3.45 (1.67) 4.2 (1.6) 2.80 (1.54) N/A
Number of Replans S5 3.38 (1.32) 4.11 (1.37) N/A N/A
S6 4.22 (1.81) 4.38 (1.49) N/A N/A

Success Rate S4 - S6 0.9 (0.3) 0.9 (0.3) 0.33 (0.47) 0.27 (0.44)

and PokeRRT* also demonstrated the qualitative behaviors vi-
sualized in Fig. 3.

Errors in dynamic modeling caused by the gap between simu-
lation and the real-world are covered by the replanning strategy
in our work. However, future work in identifying sources of
uncertainty will allow for the quantification of object—obstacle
collision margins and incorporating them directly into the
planning process will lower the chances of collision in the real-
world. In order to make plan execution in the real-world more
robust, our future work will also formalize analytical and learned
models for poking and quantify object constraints which will
lead to additional insights about the capabilities and limitations
of poking. For instance, poking may not be an effective mode
of manipulation for high friction interactions and should also be
used sparingly since it may cause significant wear-and-tear on a
real robot through repeated execution of high-speed trajectories.
Consequently, by discovering the feasibility conditions of
multiple skills (e.g. poking, pushing, and grasping) through
interaction and planning around the key strengths of each motion
primitive, robots will be able to more efficiently manipulate
objects.

REFERENCES
[1] 1. M. Bullock and A. M. Dollar, “Classifying human manipulation behav-
ior,” in Proc. IEEE Int. Conf. Rehabil. Robot., 2011, pp. 1-6.
A. Billard and D. Kragic, “Trends and challenges in robot manipulation,”
Science, vol. 364, no. 6446, 2019.
K. M. Lynch and M. T. Mason, “Dynamic nonprehensile manipulation:
Controllability, planning, and experiments,” Int. J. Robot. Res., vol. 18,
no. 1, pp. 64-92, 1999.
'W. Huang, “Impulsive manipulation,” Ph.D. dissertation, Carnegie Mellon
Univ., Pittsburgh, PA, USA, Aug. 1997.
A. Pasricha, Y. S. Tung, B. Hayes, and A. Roncone, “PokeRRT: A kinody-
namic planning approach for poking manipulation,” in Proc. IEEE IROS
Workshop Impact-Aware Robotics, 2021.
F. Ruggiero, V. Lippiello, and B. Siciliano, “Nonprehensile dynamic
manipulation: A survey,” IEEE Robot. Automat. Lett., vol. 3, no. 3,
pp. 1711-1718, Jul. 2018.
M. A. Toussaint, K. R. Allen, K. A. Smith, and J. B. Tenenbaum, “Differ-
entiable physics and stable modes for tool-use and manipulation planning,”
in Proc. Robotics: Sci. Syst., Pittsburgh, PA, USA, Jun. 2018.
A.Zeng, S. Song, J. Lee, A. Rodriguez, and T. Funkhouser, “TossingBot:
Learning to throw arbitrary objects with residual physics,” IEEE Trans.
Robot., vol. 36, no. 4, pp. 1307-1319, Aug. 2020.

[2]
[3]

[5]

[6]

[7]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

J. Z. Woodruff and K. M. Lynch, “Planning and control for dynamic,
nonprehensile, and hybrid manipulation tasks,” in Proc. IEEE Int. Conf.
Robot. Automat., 2017, pp. 4066-4073.

C. Song and A. Boularias, “Learning to slide unknown objects with
differentiable physics simulations,” in Proc. Robotics: Sci. Syst., Corvallis,
Oregon, 2020.

M. T. Mason, “Mechanics and planning of manipulator pushing opera-
tions,” Int. J. Robot. Res., vol. 5, no. 3, pp. 53-71, 1986.

M. Bauza et al., “Omnipush: Accurate, diverse, real-world dataset of
pushing dynamics with RGB-D video,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., 2019, pp. 4265-4272.

C. Zito, R. Stolkin, M. Kopicki, and J. L. Wyatt, “Two-level RRT planning
for robotic push manipulation,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., 2012, pp. 678-685.

J.Zhou, Y. Hou, and M. T. Mason, “Pushing revisited: Differential flatness,
trajectory planning, and stabilization,” Int. J. Robot. Res., vol. 38, no. 12-
13, pp. 1477-1489, 2019.

A. Kloss, M. Bauza, J. Wu, J. B. Tenenbaum, A. Rodriguez, and J. Bohg,
“Accurate vision-based manipulation through contact reasoning,” in Proc.
IEEE Int. Conf. Robot. Automat., 2020, pp. 6738—6744.

J. K. Li, W. S. Lee, and D. Hsu, “Push-Net: Deep planar pushing for
objects with unknown physical properties,” in Proc. Robotics: Sci. Syst.,
Pittsburgh, PA, USA, Jun. 2018.

J. E. King, J. A. Haustein, S.S. Srinivasa, and T. Asfour, “Nonprehensile
whole arm rearrangement planning on physics manifolds,” in Proc. IEEE
Int. Conf. Robot. Automat., 2015, pp. 2508-2515.

J. A. Haustein, J. King, S.S. Srinivasa, and T. Asfour, “Kinodynamic
randomized rearrangement planning via dynamic transitions between
statically stable states,” in Proc. IEEE Int. Conf. Robot. Automat., 2015,
pp- 3075-3082.

Muhayyuddin, M. Moll, L. Kavraki, and J. Rosell, “Randomized physics-
based motion planning for grasping in cluttered and uncertain environ-
ments,” IEEE Robot. Automat. Lett., vol. 3, no. 2, pp. 712-719, Apr.
2018.

C. Zhu, Y. Aiyama, T. Arai, and A. Kawamura, “Frictional sliding motion
in releasing manipulation,” Adv. Robot., vol. 19, no. 2, pp. 141-168, 2005.
E. Coumans and Y. Bai, “PyBullet, a python module for physics simu-
lation for games, robotics and machine learning,” 2016-2019. [Online].
Available: http://pybullet.org.

J. Collins, D. Howard, and J. Leitner, “Quantifying the reality gap in
robotic manipulation tasks,” in Proc. IEEE Int. Conf. Robot. Automat.,
2019, pp. 6706-6712.

P. Beeson and B. Ames, “TRAC-IK: An open-source library for improved
solving of generic inverse kinematics,” in Proc. IEEE-RAS 15th Int. Conf.
Humanoid Robots, 2015, pp. 928-935.

S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” Dep. Comput. Sci., Iowa State Univ., Oct. 1998.

S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” Int. J. Robot. Res., vol. 30, no. 7, pp. 846-894, 2011.
S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and S. Teller, “Anytime
motion planning using the RRT,” in Proc. IEEE Int. Conf. Robot. Automat.,
2011, pp. 1478-1483.

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on March 02,2022 at 06:53:18 UTC from IEEE Xplore. Restrictions apply.

http://pybullet.org

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

