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ABSTRACT
The ability to predict where a robot will be next, or how it will
navigate an area is critical to safe and effective human-robot collab-
oration and interaction. Due to information asymmetry, the path
that a robot takes may be optimal, yet unpredictable to an observ-
ing human who does not have access to the same information.
Unpredictability presents a safety risk to humans, and also makes
interacting with robots more cognitively intensive and confusing
than need be. In this work, we propose an algorithm that optimizes
a robot’s trajectory for predictable behavior, resulting in a robot
that moves in a way that is more predictable to humans, balanced
with what is optimal to the robot. To validate this approach, we pro-
pose two human-subjects experiments, one of which is conducted
in virtual reality.

CCS CONCEPTS
•Human-centered computing→ Virtual reality; • Comput-
ing methodologies→ Robotic planning; Optimization algo-
rithms.
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1 INTRODUCTION
As robots become more integrated into additional domains and
aspects of daily life, the problem of robot unpredictability has be-
come more salient. Prior work has indicated that predictability of
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Figure 1: A to-scale Spot robot as viewed via the Meta Quest
3. The robot traverses the simulated environment, enabling
testing of our algorithm for robot trajectory optimization in
a robust and realistic environment.

robots is critical to smooth and effective human-robot collaboration
and interaction. Humans find predictable robots easier and more
satisfying to work with - they trust them more and view them more
positively than less predictable robots [5].

Predictability, the “quality of matching expectation" [6], is the
key to successful human-robot interactions, as research has shown
that human expectations of robots are usually different from the
robot’s capabilities. Calibrating and reducing the gap between ex-
pectations and reality is the challenge that this work addresses via
predictability. By emphasizing predictability with minimal sacrifice
of optimality, we can more effectively collaborate and match human
expectations with robot performance.

There is a significant body of work that explicitly changes robot
behavior to follow a convention or heuristic to promote human
comfort or smoother collaboration [4, 17, 18], but these methods are
pre-programmed and are not flexible to new environments. Other
work has been done with predictability on the task-level, as well as
the motion planning-level [6, 7].

There have also been prior works that use reinforcement learn-
ing approaches for human-robot or human-agent collaboration.
However, many of these approaches are not validated with human
subjects nor are they flexible - the agent’s policy is learned, and
cannot be easily adjusted to new scenarios where the environment
or goals have changed [9, 11, 19]. Few approaches are validated
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(a) t=2 (b) t=3 (c) t=6

Figure 2: These figures illustrate the optimal trajectory of a robot through a given environment. While the robot is reasoning
over all information available to it, this information may not be visible to the human, as in this case. While the human may be
able to see obstacles (blue), areas of small negative reward that the robot may be avoiding could appear as normal areas (shades
of green). Because of this information asymmetry the trajectory the robot takes does not match expectations.

across multiple environments, in the context of a human subjects
study, with an embodied or simulated robot, as this work does.

The predictability function we introduce emphasizes the sym-
metry of the generated path, such that it better matches human
expectations, given humans’ preferences for symmetry [21, 23]. We
formulate our approach as a multi-objective trajectory optimiza-
tion problem. This allows us to create objectives for more practical
aspects, such as collision avoidance and state validity, as well as
balancing predictability and optimality simultaneously within the
same interaction.

Through the use of VR, we validate our algorithm while simulta-
neously ensuring participant safety, which would be challenging to
do in a real environment with a physical robot. Additionally, we are
able to construct a larger variety of environments for validation, in
challenging environments such as those with obstacles and situa-
tions that are difficult for physical robots to traverse. Through this
validation, we expect to show that our approach facilitates more
predictable, understandable, and effective human-robot collabora-
tion, while retaining robot performance, balancing predictability
and optimality.

2 RELATEDWORK
A significant problem in facilitating effective human-robot collab-
oration is the incorporation of mental models. Mental models are
structures about the world that humans construct in their minds
to help navigate environments, make decisions, and reason about
collaborators [20]. Humans are exceedingly skillful at constructing
mental models about other human collaborators [24]. Human fac-
tors research indicates that the more accurate a human’s mental
model of another is, the better they will be able to collaborate with
each other [14]. This concept does translate into human-robot in-
teractions, as humans also construct mental models of the robots
that they work with [20]. As in human-human collaboration, the
more accurate the human’s mental model of the robot is, the more

effective the human-robot collaboration will be [10, 14, 16, 25]. Go-
ing further, when humans and robots form shared mental models,
the collaboration is even better [16].

We adopt Dragan’s definition of predictability as “the quality
of matching expectations” [6], which is distinct from a concept
such as legibility. For the purposes of this work, we operate under
the realistic assumption that human collaborators are aware of
robot teammates’ goals. Prior work underscores the importance of
predictability in human-robot interaction, as robots matching the
expectations of humans leads to better collaboration [10, 14, 16, 25].
There are also significant downstream implications of predictability.
Agents and robots that are more predictable are preferred, and more
trusted by the humans that interact with them [5].

The expectations that a human has of a given robot are derived
from their mental model of the robot [20]. Thus, when the robot
is more predictable to the human, this indicates that their mental
model of the robot is more accurate, which leads to the positive
consequences discussed earlier. Some prior work has shown that
emphasizing predictability above or in tandem with optimality
leads to better human-robot collaboration [7], but this domain is
relatively underexplored.

There is a significant obstacle to humans forming accurate men-
tal models of robots. Humans and robots reason in fundamentally
different ways. Robot programming usually relies on algorithmic
and mathematical approaches. Humans, by contrast, do not op-
timize [8]. Rather, they rely on a cognitive toolkit that contains
strategies such as heuristics and patterns [1, 2, 8, 13, 15, 22].

Ergo, the human and robot are reasoning in different ways about
a shared environment, which leads to a significant mismatch be-
tween the human’s model of the robot and the ground truth. There
have been works that focus on altering the human’s perceptions
of the robot [3, 12], but human cognitive methods, refined over
millennia of evolution, are far less flexible than altering the robot’s
behavior to match human expectations.
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In order to emphasize the predictability of the robot while also
retaining strong robot performance, we formulate our solution as a
multi-objective optimization problem, which takes the optimal path
as an input. Formulating our solution in this way allows for greater
flexibility than other methods, such as reinforcement learning, not
requiring substantial offline computation to accommodate changes
and not being restricted by the Markov property. In this formula-
tion, the cost of a given waypoint can be derived using any number
of other waypoints and the state size can be variable depending
on both the objective as well as the environment. The size of the
environment can also be highly variable without making any adjust-
ment to the objective function or any retraining. Additionally, our
formulation is independent of the method used to obtain or encode
an optimal robot policy. Our approach doesn’t rely on knowledge
of the optimal policy itself, only its output (a rollout of the robot’s
trajectory). Lastly, our proposed formulation for navigation prob-
lems utilizes a simplified environmental representation such that
there are two types of states within the environment: impassable
terrain states (obstacles) and normal states. Additional state types
may be added as applications require, but this is the minimal set
required.

To validate our approach, we use virtual reality to simulate a
variety of outdoor environments. Each environment a participant
sees is procedurally generated such that while participants may
see environments that follow the same template (i.e. placement of
obstacles and areas of negative reward to be avoided by the optimal
robot), no two environments are identical, removing concerns of
using cherry-picked scenarios.

Additionally, the virtual environments allow for a greater variety
of obstacles and terrains than would be possible to run outside of
virtual reality. Participants can navigate around lakes, over boulders,
through dense brush, as well as through steep and uneven terrain
without the risk of personal injury or damage to the robot.

3 METHODS
We define a trajectory as an ordered list of waypoints. The way-
points are connected by segments, with timing information inform-
ing the duration of transition.

The cost of a given trajectory is the sum of the cost of each of
the waypoints. Our method minimizes the cost using a stochastic
trajectory optimization process.

The cost of a given waypoint is formulated as a summation of
individual objective functions. Some of the functions are considered
to be harder constraints than others. Several of the objective func-
tions involve obeying the basic mechanics of the environment, such
as collision avoidance and restricting the robot to valid states. These
functions ensure that the final trajectory obeys the mechanics of the
environment and limitations of the agent. The other components
of the objective function relate to the balance of predictability and
optimality of the trajectory. The optimality component relies on the
output of the optimal policy, and prevents the predictable trajectory
from straying too far from the optimal policy. The predictability
component minimizes cost for those waypoints that promote sym-
metry in the trajectory. This leads to trajectories that are more
symmetrical, and thus more visually appealing and predictable to
humans.

3.1 Collision Avoidance Objective
𝐶 (𝑤) = 𝐶𝑤𝑎𝑦𝑝𝑜𝑖𝑛𝑡 (𝑤) +𝐶𝑠𝑒𝑔𝑚𝑒𝑛𝑡 (𝑤)

𝐶𝑤𝑎𝑦𝑝𝑜𝑖𝑛𝑡 (𝑤) =
{
1 w is within or on an obstacle
0 w is within an open space

𝐶𝑠𝑒𝑔𝑚𝑒𝑛𝑡 (𝑤) = 𝑆𝑛𝑢𝑚 (𝑤)
The collision avoidance objective is formulated as a sum of two
components - the waypoint collisions and the segment collisions.
The waypoint collision cost of a given waypoint is relatively sim-
ple - if the waypoint is within or touching an obstacle/impassable
state, the cost is 1. Otherwise the waypoint collision cost is 0. The
segment collision cost is more complex and can be omitted depend-
ing on the methodology used to traverse between waypoints. If a
simple interpolated path is used to connect waypoints, the segment
cost should be used. This cost assesses the segments connecting the
given waypoint with the prior and subsequent waypoints. The seg-
ment collision cost for a given waypoint is the number of obstacles
crossed by either adjoining segment, indicated by 𝑆𝑛𝑢𝑚 . This cost
may be omitted if the connections between waypoints are derived
via a more expressive method (e.g., RRT* motion plan).

3.2 Valid State Objective
This objective assesses a penalty to any waypoint that is placed
outside the bounds of the given environment. The valid state cost
for a given waypoint is 0 if the waypoint is within the environment,
and 1 if it is outside the allowable values.

3.3 Connectivity Objective
We want the waypoints to be accessible via the movements the
agent can make, so the waypoints must be within a certain distance
of each other. In the case of the environments used in our testbed,
this maximum distance is unit length. The cost is therefore 0 if
the waypoint is not more than the maximum distance from the
prior and subsequent waypoints. If the waypoint is more than the
maximum distance from the prior or subsequent waypoints, the
cost of the given waypoint is the distance overage. This prevents
the final trajectory from being unachievable by the agent.

3.4 Distance from Optimal Objective
The distance from the optimal trajectory is used to balance between
optimality and predictability. By minimizing the distance between a
trajectory maximizing predictability and the original optimal trajec-
tory, the final trajectory will not sacrifice all performant behavior
for predictability. As the predictable trajectory has the same number
of waypoints as the optimal path, this cost is the sum of the distance
between corresponding waypoints in the predictable trajectory and
the given optimal one. This objective function allows us to keep
optimality as a factor in the trajectory, thus sacrificing less reward
when creating a more predictable path. This component may also
be weighted as 0 if a purely predictable path that does not consider
optimality is desired.

3.5 Symmetry Objective
Our main method of promoting predictability within the trajectory
is promoting symmetry. We do this by determining the longest
repeating sequence of actions. In our use case, the waypoints of
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Figure 3: In this scenario, if we simply used the actions con-
necting states for the symmetry cost rather than directional
change, both of these trajectorieswould be the same sequence
of actions, and the same cost, even though one has more sym-
metry than the other.

the trajectory should be at most one action apart from the previous
waypoint, due to the limitations of our agent. Thus, the trajectory
can be converted to a sequence of actions relatively easily. When
waypoints are moved during optimization, they may have a corre-
sponding action that connects them, but this cannot be guaranteed.
The waypoints may be incurring a connectivity cost, and be un-
connectable via an action. Additionally, as waypoints are moved
in opposite directions, they may still be connectable via the same
action, though the trajectory has changed, as in Figure 3. There-
fore, we use a more fine-grained action space, such that the agent’s
actions are broken down into multiple actions related to the angle
of change between waypoints (directional change). This allows for
only the most symmetrical trajectories to incur no cost.

The sequence of actions is run through a longest repeating sub-
string algorithm to determine the longest sequence of actions that
is repeated during the trajectory. Then, for each waypoint, if the
waypoint is part of this subsequence, the cost incurred by the way-
point is 0, and is 1 if the waypoint is not part of the subsequence.
We also evaluated using the most repeated substring, which does
create some improvement in the predictability of the trajectory, but
was not as effective as the longest repeated substring across the
wide diversity of generated environments tested.

4 EVALUATION
We plan to conduct two user studies, one online and one in-person
using virtual reality. Each study is designed to test different effects
of the use of our algorithm. The online study explicitly tasks partici-
pants with predicting the robot’s route to the goal multiple times at

Figure 4: A visual illustrating the interface to conduct the
online study, also developed via simulation. Participants will
complete the robot’s trajectory to the goal in the way they
believe the robot will move, andwill be assigned a score based
on their accuracy at predicting how the robot will get to the
goal.

various timesteps for each environment. Participants in this study
will also be surveyed about predictability, understandability, and
teamingmetrics, but the lack of embodiment places the emphasis on
our algorithm’s predictability. The second study will be conducted
in-person using VR to simulate an outdoor environment with a
to-scale Boston Dynamics Spot robot. In this scenario, participants
will not be able to visualize the robot’s trajectory and instead will
be tasked with implicitly predicting the robot’s trajectory by stay-
ing within a certain radius of it while completing their task. VR
participants will also be asked about the robot’s predictability and
understanding of the robot’s behavior, as well as the performance
of the team. We will collect objective metrics of participants’ ability
to predict the robot’s movements, but this experiment emphasizes
the human’s experiences when working with a robot implementing
our algorithm.

5 EXPERIMENTAL DESIGN
5.1 Game Environment
For the VR experiment, we construct an interactive simulation,
deployed on the Meta Quest 3. In the simulation, participants and
the robot will traverse the environment to a goal point that is
known to both. While the goal point is known to the participant,
the path the robot takes to get there will be unknown. As the
robot and participant make their way through the environment,
the participant will be tasked with short retrieval errands. While
the participant retrieves items in the environment (in this case
rock samples), the robot will continue along its path, requiring
participants to effectively reason about the robot’s trajectory in
order to rendezvous back with the robot. Areas of negative reward
for the robot’s policy, such as steep slopes and uneven terrain,
are visible to the user though the robot’s policy is not explicitly
explained. Robots following the optimal policy will avoid such
areas wherever possible, our algorithm does not. Participants will
be scored based on how quickly they are able to return rocks to the
robot, as well as how close they remain to the robot throughout the
experiment. Participants will engage in six rounds of approximately
four minutes of gameplay each within environments that will be
procedurally generated at runtime.
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Figure 5: The to-scale Spot robot scanning for rocks in the
simulated environment. By engaging with the robot in VR,
participants can engage safely with the robot while still in-
doors.

5.2 Experimental Design
The experiment will be conducted with each participant randomly
assigned to one of two groups. Optimal: in this condition, the Spot
robot will follow the optimal trajectory through the environment,
avoiding all areas of negative reward. Predictable: in this condition
the Spot robot will follow the trajectory generated by our algorithm,
which while suboptimal, is designed to be more predictable to the
human teammate.

5.3 Hypotheses
We will conduct an IRB approved human-subjects study to investi-
gate the following hypotheses regarding the effectiveness of our
method within a human-robot collaborative game:

• 𝐻1: Participants in the predictable condition will achieve
higher scores in the game environment, as they will be more
efficient in rendezvousing with the robot.

• 𝐻2: Participants in the predictable condition will complete
the task with lower scores for cognitive fatigue.

• 𝐻3: Participants in the predictable condition will view the ro-
bot more positively (predictable, understandable, intelligent,
etc).

Through the use of this virtual environment, we will be able
to validate the algorithm in a setting that would not otherwise
be possible. Participants will engage with a to-scale robot in an
outdoor setting, rife with obstacles, visual obstructions, and varying
terrains. No two participants will see the same environment as they
are procedurally generated. This will allow for a more robust test
bed, and further illustrate the applicability of this algorithm in
real-life situations.

6 CONCLUSIONS
In this work, we proposed an approach to improve the predictabil-
ity of robot teammates during human-robot collaboration and de-
scribed an experimental setup that uses virtual reality to simulate
more realistic and unconstrained collaborative environments for
testing. We hypothesize that participants engaging with the robot
in these virtual environments will find the robot using our method
more predictable and easier to work with. The use of virtual reality

will allow participants to engage with the robot safely and effec-
tively in a wide variety of environments and terrains, which would
not be feasible without VR.
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