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Abstract— This work explores non-prehensile manipulation
(NPM) and whole-body interaction as strategies for enabling
robotic manipulators to conduct manipulation tasks despite ex-
periencing locked multi-joint (LMJ) failures. LMJs are critical
system faults where two or more joints become inoperable;
they impose constraints on the robot’s configuration and
control spaces, consequently limiting the capability and reach
of a prehensile-only approach. This approach involves three
components: i) modeling the failure-constrained workspace of
the robot, ii) generating a kinodynamic map of NPM actions
within this workspace, and iii) a manipulation action planner
that uses a sim-in-the-loop approach to select the best actions to
take from the kinodynamic map. The experimental evaluation
shows that our approach can increase the failure-constrained
reachable area in LMJ cases by 79%. Further, it demonstrates
the ability to complete real-world manipulation with up to
88.9% success when the end-effector is unusable and up to
100% success when it is usable.

I. INTRODUCTION

Robots are increasingly integrated into critical applica-
tions, ranging from industrial automation to healthcare and
even space exploration [1]–[3]. The reliability and continu-
ous operation of these robotic systems are crucial for their
acceptance and utilization in such demanding environments.
However, as robots perform tasks over extended periods,
the likelihood of mechanical failures increases [4]–[6]. A
particularly critical and crippling case is when multiple joints
fail simultaneously. These multi-joint failures can drastically
reduce the robot’s task space and challenge standard motion
planning algorithms due to the constraints of the robot’s
configuration and control spaces [7].

These constraints in the robot’s kinematics and dynamics
can degrade its manipulation capability through reduced
abilities. In this work, we define ability as a motor skill
a robot can recall to manipulate an object and capability
as the extent to which a robot can complete a manipulation
task. For a robot manipulator that becomes underactuated due
to multi-joint failures, several constraints can occur: i) the
position and orientation of the end effector become coupled
to the robot’s remaining functional joints, ii) the manipulable
area will be constrained to a subset of its non-failure size,
iii) grasping may not be possible due to task constraints,
such as an object being in an ungraspable orientation, iv)
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Fig. 1: This figure illustrates a robot leveraging non-prehensile
manipulation (NPM) to maintain manipulation capability despite
experiencing locked, multi-joint (LMJ) failures (indicated by the
red rings around the joints). The robot manipulates the yellow target
object from its initial position to the goal region on the right within
the failure-constrained workspace represented by the blue and green
regions.

the robot may lose the ability to manipulate the end-effector
entirely due to an adverse configuration, and v) the end
effector will be subject to nonholonomic constraints [8].
Thus, finding a motion to connect two task-space points will
require significant time to calculate or learn [9].

To counteract the limits multi-joint failures impose on the
robot’s manipulation capability, we must shift the manip-
ulation paradigm to include abilities beyond grasping and
interaction beyond the end-effector. We propose using non-
prehensile manipulation (NPM), or abilities corresponding to
“anything but” grasping, through contact across the whole
robot embodiment, to compensate for these constraints. As
seen in Fig. 1, these new abilities will increase the robot’s
reachable area and enable the completion of manipulation
tasks after multi-joint failure.

We adapt kinodynamic edge bundles to store NPM ac-
tions in a failure-centric map [10], a method that captures
the effects of nonholonomic constraints on end effector
motion. This pre-computation approach enables multi-query
planning, enhancing task planning efficiency. To utilize the
kinodynamic map, we developed a sim-in-the-loop task
planner. By simulating actions, the planner can estimate
the interactions between the robot and the environment,
improving the quality of the manipulation.

This research introduces a novel method to improve ma-
nipulation capability in the event of locked, multi-joint (LMJ)
failures [11], [12] by using NPM abilities. The contributions
of this approach are: i) modeling the failure-constrained



workspace and manipulation capability of the robot, ii)
generating a kinodynamic map of NPM actions across the
failure-constrained workspace, and iii) a manipulation plan-
ner that uses the kinodynamic map with physical interaction
simulation. We introduce a new approach to enhancing the
manipulation capabilities of robots, even in the face of
locked, multi-joint failures.

The remainder of this paper is structured as follows:
Section II discusses related work, and Section III describes
the approach for modeling LMJs and planning under these
conditions using whole-arm and NPM actions. Section IV
lays out how we evaluate our approach. Section V presents
the experimental evaluation results, where we assess the
improvements in the manipulation area and demonstrate the
capability to conduct tabletop manipulation tasks under two
different LMJ failure cases. Section VI concludes the paper
by discussing these findings and future work.

II. RELATED WORK

Developing fault-tolerant systems is critical for au-
tonomous robots that operate in harsh environments for ex-
tended periods [3], [6]. This involves the ability to diagnose,
recover from, and communicate failure modes [11], [13],
[14]. While diagnosis and communication have been studied
extensively, modeling and planning for autonomous failure
recovery is underexplored. This is due to a limited, prehensile
view of robotic manipulation [15], [16]. The proliferation of
prehensile methods for robotic manipulation is primarily due
to certainty in object pose once it is grasped. Prehensile-
only approaches limit the scope of robot capability [17],
necessitating the need for exploring NPM abilities.

A. Failure Recovery

To recover from failure, we must understand what effects
a failure causes. Partial or total degradation resulting from
extended operation and environmental factors may lead to
a mismatch between task requirements and available sys-
tem capability [4], [6], [18]. The current literature has not
thoroughly explored approaches to recovering from kine-
matic impairments in redundant robot manipulators. The
redundancies of robot manipulators can ensure recoverability
for single-joint failures. However, multi-joint failures can
severely reduce the robot’s workspace to the point of task
failure [19]. Task success with joint failures is low using
prehensile-only approaches but can be improved by consid-
ering non-prehensile modes of manipulation [17].

Prior approaches to recovering from mechanical impair-
ments include modeling the failures via analytical methods
[10], [20] and using analytical inverse kinematics to explore
and plan in the reachable space [21]. This requires time-
consuming computation of the analytical models. Other work
has developed approaches of constricting the motion plan
of the robot before failure to maximize post-fault reachable
space, [11], [12]. In contrast, our approach does not need pre-
failure constraints or analytical computation. This allows us
to plan for an arbitrary permutation of multi-joint failures
efficiently.

B. Non-Prehensile Manipulation Modeling and Planning

Non-prehensile manipulation in robotics has traditionally
focused on isolated tasks or scenarios with redundant or
fully-actuated robots [17], [22]. Past research has explored
various NPM primitives, such as throwing [23], pushing [24],
poking [25], catching [26], flipping, and rolling [17], [27],
each with its own set of advantages and challenges. Yet,
the integration of these primitives in under-actuated, LMJ-
constrained robots remains unexplored.

The likelihood of generating a valid plan over this severely
constrained reachable space in an online manner, especially
for dynamic actions such as poking, is near-zero [7]. This
informs the need for precomputation of valid actions to
guide planning for NPM primitives in the failure-constrained
kinematic and control spaces [10], [28], [29]. To that end, we
extend the concept of uniformly-sampled kinodynamic edge
bundles [10] to the failure domain by sampling edges using
failure-constrained control inputs, boosting the likelihood of
task success [7], [30].

III. METHODS

To enable robotic arms to maintain operational utility in
the face of locked multi-joint failures, our method diverges
from traditional paradigms by employing non-prehensile
manipulation, particularly poking actions, to extend the
operational capabilities of robots after failure (Section III-
A). By redefining motion primitives within the robot’s new
kinematic constraints, we explore an expanded operational
space through a strategy that includes the pre-computation
of reachable states (Section III-B, Fig. 2, Left Column) and
the formulation of kinodynamic edge bundles for feasible
action planning (Section III-C, Fig. 2, Center Column).
We developed multiple approaches to selecting actions to
understand the benefits of including a simulation in the
planning and execution loop (Section III-D, Fig. 2, Right
Column).

A. Expanding Robot Capabilities through Non-Prehensile
Manipulation

Existing manipulation approaches cannot complete tasks
in the presence of LMJs as they are restricted to exclusively
prehensile actions. They regard grasping as a dependable
method for engaging with the surroundings and consider the
end-effector as the exclusive point of interaction between
the robot and its environment. Our approach challenges
these notions by utilizing whole-body NPM to enhance the
probability of task completion.

We leverage the poking primitive in our work as a repre-
sentative NPM ability to enable manipulation in the presence
of LMJs since it significantly expands the set of reachable
configurations and the number of degrees of freedom of the
robot’s operational space. Prior work has defined poking
as a fundamental nonprehensile motion primitive that is
composed of two sequential phases: i) impact: a robot end-
effector applies an instantaneous force to an object at rest,
setting it in planar translational and rotational motion; and, ii)
free-sliding: the object slows down and comes to a halt due to
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Fig. 2: An overview of the approach to expand manipulation capability in a robot experiencing LMJs. We generate a reachability map
that captures the manipulation capability via Algorithm 1 and smooth it with interpolation. We use this reachability map to determine the
failure-centric kinodynamic map, via Algorithm 2, by sampling points in the reachable space and then saving dynamics rollouts (yellow
arrows) as edges. To use this kinodynamic map, we developed an edge planner that can vary its use of sim-in-the-loop to determine which
action the robot will take via the Random, Lazy, and Greedy Action Selection Mechanisms in Algorithm 3.

Coulomb friction between the object and its support surface.
This primitive is not limited by robot reach and leads to faster
manipulation of objects in dense clutter, in the presence of
occlusion, and in ungraspable configurations. [25]

The challenge of identifying a viable sequence of NPM
actions, such as poking, for a robot is exemplified by the high
computational demands seen in algorithms like PokeRRT
[25]. This process requires the simulation of numerous
action sequences, many of which may prove infeasible for a
specific robot failure mode. Therefore, this uniformly random
exploration of the manifold of valid states and control
parameters is inherently inefficient. The complexity is further
compounded when dealing with robots experiencing locked
joint failures. In such scenarios, the search must look beyond
only the space of control parameters for our chosen motion
primitives and require these actions to be feasible within
the altered kinematic landscape imposed by the failure. This
intersection often leads to a zero-measure manifold, which
is difficult to sample when following a uniformly random
strategy. To mitigate this issue, we propose a pre-computation
approach, which maps the reach and capability post-LMJ
and then finds a set of dynamic actions the robot can
achieve, considering the limitations imposed by LMJs. This
precomputed map of kinodynamically feasible actions serves
as a guide, significantly reducing the computational overhead
by providing a reference for what is achievable given the
current failure mode.

B. Finding Reach and Manipulation Capability After Failure

When an LMJ occurs, the bounds of the robot’s reach-
able workspace change in intractable, non-linear ways. We
must understand the new reachable area and discover what

Algorithm 1: Generate Reach-Ability Map
Input: W , Workspace of the Robot; X , set of joint constraints; k

replan attempts; ϵ, perturbation radius
Output: Wc, the Failure-Constrained Workspace of the Robot

1 iter = 0
2 for p ∈ W do
3 INTERACTIONTYPE = “PM”
4 INTERACTIONAREA = “End Effector”
5 success ←− inverseKinematics(p, X , INTERACTIONTYPE,

INTERACTIONAREA)
6 while iter < k do
7 if iter > 1 then
8 ρ←− SAMPLEUNIFORMEPSILONBALL(ϵ)
9 pρ ←− p+ ρ

10 if iter > k/2 then
11 INTERACTIONTYPE, INTERACTIONAREA ←−

CHANGEINTERACTION()
12 success ←− INVERSEKINEMATICS(pρ, X ,

INTERACTIONTYPE, INTERACTIONAREA)
13 if success then
14 Wc ←−Wc ∪ p

15 iter ←− iter + 1

16 return Wc

manipulation capabilities the robot retains across this failure-
constrained region to continue to complete tasks.

To do this, we developed a reachability and ability analysis
system, or Reach-Ability (Algorithm 1). The task space of
the robot is divided into small areas approximately the size
of the Franka Emika Panda end-effector tip, 2 cm (Fig. 2,
Left Column, Top). For each discretized area, we check to
see if the robot can find an inverse kinematics solution for
prehensile actions. To be considered a valid prehensile pose,
the end-effector must be in a range of orientations that allow



for grasping, nominally between normal to the workspace
surface and parallel to the workspace surface. To counter the
effects of the randomness of the inverse kinematics solver,
if no solution is found initially, we uniformly sample a
perturbation from an ϵ-ball inscribed within the discretization
cell and attempt solving again.

If there is still no solution after half the replan attempts are
calculated, changeInteraction() (Algorithm 1, L9)
will release the orientation constraints of PM manipulation
and switch to NPM abilities.Under the NPM abilities, the
inverse kinematics solver (Algorithm 1, L10) will: 1) cycle
through pre-selected interaction points on the robot: hand,
wrist, and forearm and 2) relax its orientation error bound
so that the solution is only restricted in position. If no so-
lutions are found, then that point is considered unreachable.
The map is smoothed through interpolation once the whole
task space is explored (Fig. 2, Left Column, Bottom). We
leverage this mapping of the robot’s statically reachable,
failure-constrained workspace to build a representation of
the robot’s action manifold by utilizing the notion of edge
bundles that parameterize the set of all feasible actions at
the intersection of the post-failure-accessible manifold and
the motion primitive manifold.

C. Construction of the Failure-Centric Kinodynamic Map

We can represent the set of all possible joint states and
valid control inputs as the manifolds C and U , respectively.
We note the end-effector workspace of the robot as W . When
an LMJ occurs, these manifolds become degenerate, failure-
constrained spaces. We note these constrained manifolds as
Cc, Uc, and Wc, respectively.

The mapping between these spaces, C 7→ Cc and U 7→ Uc,
is nonlinear and dependent on the failure configuration of
the robot. They also lose n dimensions for n locked joints.
This degeneration means the failure-constrained manifolds
have a significantly smaller volume than the unconstrained
manifolds. As a result, the probability of finding a valid
connecting plan between two uniformly, randomly sampled
points in Cc, with control inputs sampled from Uc, ap-
proaches zero. [7].

Theoretically, an analytical solution to the inverse kine-
matics exists for any given point in Wc. However, the
multiple possible permutations of failures across the joints
mean deriving the relevant equations or sampling valid
configurations is untenable. As a result, we approximate Cc
through a discretization-based approach.

We utilize the notion of edge bundles from [10]. These
edge bundles, E , are a collection of Monte Carlo rollouts, or
edges, e of the robot dynamical model with random control
inputs, q̇ ∈ Uc. The nature of these edges, i.e., simulating
a random control input from a random state for a random
duration, ensures probabilistic completeness of the planning
algorithm in Section III-D [31]. Following the procedure
outlined in Algorithm 2, we use this Monte Carlo generation
of edge bundles to produce a failure-centric kinodynamic
map (Fig. 2, Center Column). In practice, the set of all edges,
E , provides a discrete approximation to Cc.

Algorithm 2: Generate Kinodynamic Manifold.
Input: Cc, Constrained Configuration Space; Uc, Constrained

Control Space; n, number of samples; Wc,
failure-constrained workspace; ∆t, the control timestep of
the robot

Output: E , a set of edges
1 E ←− ∅
2 for i = 1 . . . n do
3 e←− ∅ // edge
4 ξEE ←− SAMPLEPOINT(Wc) // XYZ Only
5 q←− POSITIONALINVERSEKINEMATICS(ξEE , Cc)

// Orientation Unconstrained
6 t←− SAMPLEDURATION()
7 q̇←− SAMPLECONTROLINPUT(Uc)
8 valid←− True

// simulate
9 while TIMEREMAINING(t) do

10 q̈←− J(q)† × ( ˙̇q − J̇(q))q̇)
11 τ ←−M(q)q̈+ C(q, q̇)q̇+ g(q) + f(q̇)

12 m←−
√

det J(q)J(q)T

13 if LIMITSVIOLATED(q, q̈, τ ) or INCOLLISION(q) then
14 valid←− False
15 break
16 qk+1 ←− qk + q̇∆t
17 e←− e ∪ {qk, q̇}
18 if valid then
19 E ←− E ∪ e

20 return E

A kinodynamic map is computed once offline for a given
failure. Since NPM interactions are inherently stochastic,
we explicitly only model the robot’s dynamics in our edge
bundle. These attributes allow reuse across many planning
problems, making our motion planner multi-query.

D. Motion Planning under LMJ Failure Conditions

The failure-constrained kinodynamic map provides a set of
actions for our planner to complete the manipulation task.
It provides two main advantages in the context of failure-
constrained motion planning: i) it removes the need for
an inverse model such that no action sampling is required
during the planning process, and ii) it caters to a multi-
query planning framework to speed up planning times for
the failure-case significantly.

Based on the approximations of the configuration and
control manifolds (Cc and Uc), our use of nonprehensile
actions and environmental contact with the full embodiment
of the robot arm enhances task success in the presence of
LMJs. Given a start configuration of the scene x0 ∈ E,
the motion planning for the failure recovery problem is
to find a trajectory τ : [0, 1] → Efree ∩ Wc such that
τ(0) = x0 and τ(1) ∈ Egoal (Fig. 2, Right Column). Success
is manipulating the target object from its starting pose to the
goal region (Algorithm 3).

While the failure-constrained kinodynamic manifold cap-
tures the robot dynamics, interactions with scene objects are
unmodeled because physical properties, especially friction
for NPM interactions, behave stochastically in the real–
world [32]. However, physics engines provide approximately
realistic predictions of rigid body dynamics. We use the



Algorithm 3: Edge Planner.
Input: E, The Environment State; E , a set of edges; m, Action

Selection Method Mode
Output: A, an action for the robot to execute

1 T ←− ∅
2 while not GOALREACHED(E) do
3 EI ←− EDGESINTERSECTINGOBJECT(E , E)
4 if m=“Random” then
5 e←− RANDOMUNIFORMSELECT(EI)
6 A ←− e
7 return A
8 if m=“Lazy” then
9 Esim ←− E // set sim env

10 for e in SAMPLEWITHOUTREPLACEMENT(EI ) do
11 SIMULATEROBOTWITHEDGE(e, Esim)
12 if TARGETMOVEDTOWARDSGOAL(Esim) then
13 A ←− e
14 break
15 Esim ←− E // reset sim env

16 return A
17 if m=“Greedy” then
18 A ←− ∅
19 ET ←− ∅ // Edges Scored
20 scores←− ∅
21 Es ←− UNIFORMLYSAMPLESUBSET(EI)
22 Esim ←− E // set sim env
23 for e in SAMPLEWITHOUTREPLACEMENT(Es) do
24 SIMULATEROBOTWITHEDGE(e, Esim)
25 if TARGETMOVEDTOWARDSGOAL(Esim) then
26 scores←−

scores ∪ SCOREEXECUTION(Esim)

27 ET ←− ET ∪ e
28 Esim ←− E // reset sim env

29 A ←− SELECTBESTEDGE(ET , scores,m)
30 return A

Bullet physics simulation engine in the planning loop to get
the resultant pose xk+1 [33]. This allows us to capture an
approximation of robot and object dynamics faster and safer
than execution on a real robot.

To understand the benefits of utilizing a simulator in the
planning loop, we study multiple Action Selection Mecha-
nisms (ASMs):

• Random (Algorithm 3, L4-7): The Random ASM finds
all the edges that intersect the object and picks one
randomly.

• Lazy (Algorithm 3, L8-16): The Lazy ASM utilizes
our sim-in-the-loop planner to find an edge that moves
the target object toward the goal. Of all the edges that
intersect the object, it picks the first action that moves
the target towards the goal in the simulator.

• Greedy (Algorithm 3, L17-30): The Greedy ASM will
sample a subset of the edges that intersect the object
and score them based on how close the target object is
to the goal after simulating the selected actions. It will
command the highest-scored edge for the real robot.

IV. EXPERIMENTAL DESIGN

We test our system in three real-world scenarios with two
LMJ cases across three different ablative ASMs. These fail-
ure cases, shown in Fig. 3, demonstrate two different families
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Fig. 3: Franka Emika Panda robotic arm with multiple locked joints.
The left represents Failure Case 1, with the locked Anterior and
Posterior Elbow Rotation and Wrist Rotation joints locked. The
right represents Failure Case 2 with locked Wrist Lift and Rotation
joints.
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Fig. 4: This figure presents two action sequences demonstrating
the NPM interaction using different robot embodiment areas. The
top sequence (1a-c) illustrates the interaction using the end effector,
while the bottom sequence (2a-c) shows the interaction utilizing the
robot’s whole embodiment. These sequences represent a composite
scenario derived from scenarios 2 and 3, providing an illustrative
view of the robot’s expanded capabilities.

of failures that can occur: Case 1 limits the end effector
grasping ability to a portion of the reachable area, and Case
2 precludes the use of the end effector in its entirety. Without
loss of generality, these two cases represent a subset of the
many permutations of faults that can occur due to LMJs.
Our results are a quantitative analysis of the planning time,
success rate, and reachability improvements resulting from
utilizing the robot’s whole embodiment combined with NPM
actions. Two representative NPM actions are shown in Fig. 4.

We consider two failure cases in our evaluation:
• Failure Case 1 (Fig. 3, left): The first case involves

locking three joints: the Posterior Elbow Rotation,
Anterior Elbow Rotation, and Wrist Rotation Joints.
This limits the graspable area and reduces the range
of grasping configurations by coupling the end-effector
orientation to the joint configuration.

• Failure Case 2 (Fig. 3, right): In the second case, two
joints are locked: the wrist lift and wrist rotation joints.
This failure case precludes the use of the end-effector in
completing manipulation tasks. This enables us to test
the system using exclusively the non-end-effector parts
of the robot’s embodiment.

The experimental scenarios are presented in Fig. 5. Each
scenario involves manipulating the target object (the yellow
cube) to the goal location (green area):

• Scenario 1 (Fig. 5, left): This scenario has three mov-



Scenario 1 Scenario 2 Scenario 3

Fig. 5: This figure presents three distinct scenarios tested in the study. Scenario 1 (left) features three movable obstacles (white with
fiducial markers) and one target object (yellow). Scenario 2 (center) introduces a tunnel obstacle partitioning the table. Scenario 3 (right)
includes 11 movable obstacles and one target object. The green shaded area represents the goal for each Scenario.

able obstacles and one target object. This scenario is
motivated by the need to be able to manipulate in
cluttered environments that hinder direct access to the
target object.

• Scenario 2 (Fig. 5, center): The second scenario has
a tunnel obstacle in the middle, partitioning the two
halves of the table. This scenario is motivated by the
need to perform dexterous manipulation while maneu-
vering around environmental obstacles.

• Scenario 3 (Fig. 5, right): There are 11 movable ob-
stacles and one target object. This scenario allows us
to explore the utility of our planner in the presence of
increased object-obstacle interactions.

To comprehensively understand how NPM abilities expand
the robot’s task space, we conduct the reachability analysis
in Section V-A. In Section V-B, we show the effectiveness
of our system across the three scenarios shown in Fig. 5,
for the two failure cases described in Fig. 3, using the three
Action Selection Mechanisms described in Section III-D over
a total of 267 trials. This analysis shows the limitations of
grasping-only actions and demonstrates the improvements
brought about by NPM abilities. Through these results, we
seek to verify two hypotheses:
H.1 When experiencing LMJs that limit or disallow the use

of the end-effector, whole-body NPM abilities increase
the manipulable area of a robot manipulator.

H.2 When experiencing LMJs that limit or disallow the
use of the end-effector, whole-body NPM abilities can
increase the success rate of a robot conducting tabletop
manipulation tasks.

V. EXPERIMENTAL RESULTS

A. Reachability and Manipulation Capability Analysis

Relying solely on the end effector renders the robot
ineffectual in failure cases that severely or entirely limit
its use. NPM abilities and the capability to interact with
the environment using the whole embodiment allow for
increased robot manipulable area. To study this, we analyzed
the robot’s manipulable area and capabilities over the task
space of the evaluation scenarios. The manipulable area is
found through the method presented in Section III-B.

The nominal full-dexterity manipulable area is 0.85 m2;
the use of NPM increases this area to 108% of nominal
(Table I, rows 1 and 2). The manipulable area in the first
failure case is severely limited by the inability to control the
end-effector’s orientation and task space movements in the

Failure Case Ability Area (m2) Change in Reachable Area

No Failure NPM+PM 0.92 Datum
PM 0.85 -8%

1 NPM+PM 0.85 -8%
PM 0.62 -33%

2 NPM+PM 0.73 -21%
PM 0 -100%

TABLE I: Reachability Data

z-axis when the end-effector is closer to the robot’s base.
When using NPM actions, the robot maintains 92% of the
reachable area compared to 67% when using PM actions
only (Table I, rows 3 & 4). Since Failure Case 2 precludes
the use of the end-effector, the PM-only reachable area is
eliminated. However, using NPM actions, the reachable area
is only reduced by 21% (Table I, rows 5 & 6).

The results show that in failure modes that disallow or
limit the use of the end effector, utilizing the whole body
of the robot with NPM actions significantly expands the
area of the robot’s reachable space, supporting H.1.

B. Real-world Manipulation Results

Fig. 6 shows the average total task time and success rates
across Scenarios 1-3, Failure Cases 1 and 2, and the Random,
Lazy, and Greedy ASMs. Across the ASMs, we see a trend
of the Greedy method taking the longest, up to 307.5s, and
the Random method taking the shortest time, as low as 37.5s,
to complete the task, with the Lazy method roughly falling
in between, at 47.3s-82.7s. This is expected because when
averaged over all scenarios, the Greedy edge selection takes
more time to plan than the other methods. Regarding the
success rate, we see a clear trend in Failure Case 1, where the
Greedy edge selection method has a 100% success rate across
all scenarios, and the Random edge selection has the lowest
success rate. The Lazy edge selection has a success rate
that, at best, matches the Greedy selection method at 100%
and, at worst, is better than the Random selection method,
at 73.3% vs. 66.7% for Scenario 3. However, for Failure
Case 2, no clear trend for the success rate occurs. Overall,
the Lazy selection case is successful in scenarios 2 and 3,
while the other two ASMs tend to have poorer results, except
in scenario 1 for the Greedy ASM at 70.6%. These results
come from the combination of the inherent stochastic nature
of the NPM interactions multiplied by the decreased sim-to-
real accuracy of our sim-in-the-loop planner when interacting
with areas of the robot that are not the end effector, as this
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Fig. 7: The distribution of actions required to complete different scenarios for each failure case using the action selection methods. Each
graph represents a scenario under a specific failure case, with the x-axis indicating the number of actions and the y-axis representing the
density across all trials.

failure case requires. This can partly be explained by the
slight differences between our simulated collision meshes
and the real robot embodiment.

In Fig. 7, we see the distribution of the number of actions
needed to complete a scenario successfully for the three
different action selection methods. Across both failure cases
and all scenarios, we see a trend of the Greedy ASM
requiring, on average, the fewest actions to complete the
given task. This strongly supports the usefulness of including
a simulator in planning to inform the best action. When
comparing the Lazy and Random ASMs, we see that the
Random approach usually has a flatter or wider multi-peak
distribution. This is expected as the Random approach can
complete the task in one action or require many actions.
The Lazy ASM is a balance between the two extremes. In
Failure Case 1, the average number of actions sits between
the Greedy and Random ASMs. In contrast, in Failure Case
2, we see the weakness of its one-shot approach, taking
one to two more actions, on average, to complete than the
Random or Greedy approach. Still, there is less deviation
than the Random approach, with a shorter tail on the higher

end of the actions needed.
Overall, our data shows a new and unique ability to con-

duct manipulation tasks while experiencing LMJs that restrict
the robot’s capability to manipulate using traditional pick-
and-place approaches. Our sim-in-the-loop planner improved
the robot’s ability to conduct these tasks by looping in a
physics model to our NPM actions. We demonstrated that
a balanced approach of speed and simulation accuracy can
complete our manipulation scenarios well. We have shown
that while experiencing LMJs, our approach can unlock
the capability of robotic manipulators to conduct tabletop
manipulation successfully, supporting H.2.

VI. CONCLUSION AND DISCUSSION

Our research has demonstrated the power of non-
prehensile manipulation and whole-body interaction in en-
abling robotic manipulators to operate effectively despite
locked multi-joint failures. By leveraging these two key
strategies, we have shown that our approach can significantly
increase the manipulable area, allowing the robot to main-
tain up to 92% of the nominal reachable area, even when
the gripper is unusable. Furthermore, our sim-in-the-loop



planner effectively utilizes kinodynamic maps to complete
manipulation tasks during LMJ failures.

We believe future work can: i) explore and improve the
completeness of our motion planner [31]; ii) expand the
portfolio of motion primitives, such as pushing and rolling;
iii) extend our approach to more precise manipulation tasks
and other robot embodiments, like mobile manipulators;
and iv) improve the simulation physics to match the real
world more closely. Furthermore, we believe that applying
optimization-based or learned approaches to joint failures can
be fruitful areas of future research. This research paves the
way for robots to operate independently for extended periods,
even in the face of significant failures.
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