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Abstract— Effective collaboration between humans and AIs
hinges on transparent communication and alignment of mental
models. However, explicit, verbal communication is not always
feasible. Under such circumstances, human-human teams often
depend on implicit, nonverbal cues to glean important infor-
mation about their teammates such as intent and expertise,
thereby bolstering team alignment and adaptability. Among
these implicit cues, two of the most salient and fundamental
are a human’s actions in the environment and their visual
attention. In this paper, we present a novel method to combine
eye gaze data and behavioral data, and evaluate their respective
predictive power for human proficiency, trust, and intent. We
first collect a dataset of paired eye gaze and gameplay data
in the fast-paced collaborative “Overcooked” environment. We
then train models on this dataset to compare how the predictive
powers differ between gaze data, gameplay data, and their
combination. We additionally compare our method to prior
works that aggregate eye gaze data and demonstrate how these
aggregation methods can substantially reduce the predictive
ability of eye gaze. Our results indicate that, while eye gaze
data and gameplay data excel in different situations, a model
that integrates both types consistently outperforms all baselines.
This work paves the way for developing intuitive and responsive
agents that can efficiently adapt to new teammates.

I. INTRODUCTION

With the continued advancement of artificial intelligence
(AI) and robotics, it has become increasingly important to
develop autonomous agents that can effectively collaborate
with humans. One promising research direction focuses on
endowing agents with a theory of mind [1], involving the
development of mental models of teammates to improve
adaptability [2]. “Explicit” communication—which is direct,
unambiguous, and oftentimes verbal—can help form such
mental models [3]. However, in many real-world teaming
scenarios, only “implicit” communication—which is indi-
rect, suggestive, and often non-verbal—may be possible.
This could be due to factors such as the need for rapid
action execution or high levels of ambient noise. In these
scenarios, autonomous agents must rely on implicit signals
to understand their teammates. Two implicit signals have
been identified in the literature as promising options for these
scenarios: 1) a teammate’s behavior in the environment [4],
which informs about intent and can anticipate future behavior
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Fig. 1. In this work, collect a large dataset of paired eye gaze and gameplay
data in the collaborative game ”Overcooked.” Using this data, we train a
causal transformer demonstrating state-of-the-art performance in its ability
to predict a collaborator’s task proficiency, trust in an autonomous teammate,
and future intent.

and 2) a persons’s visual attention, which provides fine-
grained, immediate signals about their focus [5]. While these
signals have been leveraged independently to model and
predict human behavior, few works have sought to combine
them. In this work, we hypothesize that by integrating these
streams a more nuanced and complete model of a teammate
can be learned. It is worth noting that acquiring high-fidelity
data of complex cooperative tasks in sufficient quantities for
deep learning models and comprehensive analysis is still a
challenge in the field. This paper not only provides such a
dataset collected through a large user study, but also provides
a state-of-the-art (SotA) framework in the form of a causal
transformer [6] and analysis comparing different implicit
signals to predict a human’s: a) proficiency at a task; b) trust
in an autonomous teammate; and c) future intents.

Prior work in human-robot interaction (HRI) and human-
computer interaction (HCI) have demonstrated the predictive
power of implicit signals like eye gaze [7], [8], [9] and
behavioral data [10], [11], [12]. Despite these advances,
existing work still has limitations. First, most of these works
infer only a single data point about their human teammates
rather than build a comprehensive model of their behavior.
Second, they are often applied to non-representative, turn-
based environments where a single action can span several
seconds and the autonomous agent is limited compared to the
human teammate. Third, when eye gaze data is employed,
it is often hand-crafted into a small set of features before
being fed to predictive models, degrading a rich source
of information for cluing the agent into the users’ mental
state. Finally, most of these papers do not publicly release
their datasets, hindering replication, comparison, and further



research.
In contrast, this work not only leverages eye-tracking and

behavioral data in parallel to accurately predict multiple
latent human factors, but also performs a comprehensive
analysis of these inputs to determine the advantages of each
data type. We collect this data in the fast-paced collaborative
“Overcooked” environment (cf. see Fig. 1 and [13]), which
serves as an ideal testbed for human-AI teaming due to its
capacity to efficiently gather large amounts of behavioral
data in the form of intricate and coordinated gameplay at
different levels of abstraction. We then leverage state-of-
the-art deep learning models to predict multiple mental and
behavioral factors including the human’s intent (in the form
of future attempted subtasks), their trust in the autonomous
teammate, and their proficiency at the game. Additionally,
we compare several methods to aggregate and represent eye
gaze data, finding that gaze data provides salient information
faster than gameplay data, but that gameplay provides a
stronger signal as the task progresses. Combining the two
consistently matches or outperforms the individual signals.
Our results also show that gaze aggregation across the
temporal dimension only minimally impacts results in our
tasks, while the spatial aggregation method used in [14]
substantially worsens performance.

In conclusion, we present the following contributions: 1) a
time-series model that can be conditioned on both human eye
gaze and gameplay data for accurate predictions of behav-
ioral intents, skill level and trust in the agent; 2) a thorough
analysis comparing the predictive power of gameplay data,
eye gaze data, and the combination of the two, providing
practical insights the contexts in which each type of data
is most effective; and, 3) a publicly released dataset of
gameplay data paired with eye gaze data in a fast-paced
collaborative environment. We believe these insights derived
will enable AI agents to better model human teammates,
allowing faster and more specific adaptation to improve the
team fluency and capability. By equipping agents with the
ability to process implicit signals, we introduce new modes
of understanding and expand the boundaries of human-agent
interaction.

II. RELATED WORK

Implicit human signals, such as EEG signals [15], heart
rate [16], recent actions [10], body language cues [17], and
eye gaze [5], have been studied as a means to improve the
human-machine interaction [18].

Human behavior as a predictor: Human behavior often
contains informative action cues that hint at future intent. For
instance, reaching for a door handle suggests the intention to
exit a room. Notably, past sequences of behavior have been
used to improve human-robot collaboration on assembly
tasks [19], [20], anticipate a human’s action in a herding
game [4], enhance human performance in teleoperation tasks
[21], and predict a decision making in search and rescue [22].
Other work has investigated how to predict an action based
on an observed initial portion of it. Wearable devices have
been employed to collect arm movement data and improve

prediction in handover tasks [23]. Progress has also been
made on predicting actions from RGB images and optical
flow [12] or RGB images alone [24], as well as on breaking
down human movement into granular “movemes” to improve
behavioral predictions [25].

Eye gaze as a predictor: Eye gaze stands out as a salient
signal, providing rich insights into a person’s attention,
information processing, and social interactions, enhancing
human teaming [26]. It has been used to anticipate intent in
a robotic manipulation tasks [27], as a substitute for wake-
words for smart-speakers [28], predict train routes in a turn-
taking train board game [29], and detect errors in robot
behavior [30]. Interestingly, the predictive power of gaze has
been also demonstrated on the other end of the human-robot
dyad: a robot equipped with a human-like binocular system
and corresponding gaze controller [31] improves the human’s
ability to predict the robot’s intent [32].

Our work shares similarities to [33] and [14]. Both works
use implicit signals, including eye gaze, to predict informa-
tion about humans in a fast-paced collaborative environment.
[33] explores the use of gaze features, game data, survey
data, and demographics to predict users’ preferences between
early game assistance and late game assistance. However,
unlike our study, this work does not compare the use of
gameplay data on its own to eye gaze data alone. [14]
uses eye gaze data to predict periods of human confusion
in the same environment we employ, however they do not
consider the use of gameplay in any form. Notably, both of
these works aggregate gaze data over both time and space.
Our research differs by 1) thoroughly comparing gaze data
to gameplay data, 2) examining the effects of aggregating
gaze data in multiple different ways, and 3) exploring the
predictive power of implicit communication across the three
differentdimensions of trust, proficiency, and intent.

III. METHOD
A. Data Collection

1) Environment: Due to its highly flexibly nature and
its ability to capture a wide-range of human-agent teaming
behaviors, we focus our work on the collaborative cooking
game “Overcooked” [13]. “Overcooked” requires a team
composed of a human and an AI-controlled chefs to cook
and serve as many soups as possible within a set time
limit. To achieve this, players must execute a series of tasks
ranging from collecting onions to placing them in a pot
and serving the finished soups. Successful service rewards
the team with 20 points. At each timestep, each player can
choose one of the following base actions: up, down, left,
right, interact with an object (to pick up, place, or serve
items), or stay in place. “Overcooked” requires players to
coordinate both on high-level strategic decision and on their
underlying movements. At the strategic level, players should
aim to minimize redundancy and inefficiency—for instance,
avoiding the situation where both players retrieve a dish
when only one soup is being prepared. On the movement
level, careful navigation is essential to prevent collisions
between players. This combination of strategic planning



(a) Asymmetric Advantages (b) Coord. Ring (c) Counter Circuit

Fig. 2. The three “Overcooked” layouts used. From [13].

and movement precision makes “Overcooked” an especially
suitable platform for studying human-agent collaboration.

Fig. 2 shows the three specific game layouts we use to
gather data: 1) Coordination Ring, which requires agents
to focus heavily on their movement to avoid collisions 2)
Asymmetric Advantages where agents are fully separated
and so cannot collide, but must instead focus on aligning
their high-level strategy, and 3) Counter Circuit that requires
both movement and strategic alignment. Following previous
work [34], we ran the experiments for 400 in-game timesteps
at 5 FPS, which equates to 80 seconds of gameplay.

2) AI Agents: To capture a thorough and wide range of
human behaviors, we collected data using three different
agents of varying ability. The first agent is a random agent,
which randomly selects one of the six base actions. This
represents a very low level of play and is intended to
create situations where the human may be confused about its
teammate leading to low trust. The second agent is a self-
play (SP) agent that is trained using reinforcement learn-
ing (RL)—specifically proximal policy optimization (PPO)
[35]—and, as the name suggest, is trained being teamed
with itself. This agent can be quite good at the game if the
human adapts to its play-style, but its training regime causes
it to be very rigid in its behaviors. This agent is aimed to
create trials where the human can have moderate trust in their
teammate, but must still pay attention to the agent’s behavior
to avoid frequent collisions and a lower final score. Lastly,
we use a SotA HAHA agent [34] that has been shown to be
a significantly more performant, trusted, and understandable
teammate. This agent was included to elicit situations where
the humans have a high-level of trust in their teammate.

3) Trial Design: The primary objective in the dataset
creation was to collect a wide range of human behaviors
while performing a collaborative task from which we could
analyze and compare the predictive ability of gameplay
data and human eye gaze data. To this end, we ran an
IRB-approved user study where we recorded participants
playing the collaborative cooking game Overcooked. After
completing consent forms, participants were required to fill
out a demographic survey, read instructions about the game,
and complete a short tutorial that required them to serve
a completed soup before moving on. Each participant then
played 18 rounds of Overcooked, with each round being
played with one of three different agents on one of three
different layouts. This led to each participant playing the
nine different layout-agent combinations twice during the full
duration of the trial. In the next section, we provide a more
in depth description of the Overcooked environment and the

specific layouts used, the set of different agents used, the
number and recruitment methods for participants, the data
collected during each trial, and how the data was processed.

4) Participants: In total, 83 participants were recruited
across both the United States Air Force Academy (USAFA)
and the University of Colorado (CU) Boulder using newslet-
ter announcements and an online recruiting software. Nine
participants were removed due to either technical difficulties
with the system or poor eye tracking data quality (> 40% of
eye tracking data was missing on at least one trial), leaving
74 participants in the dataset, for a total of 1332 total rounds
of play or 29.6 hours of recorded play time. The age of
participants ranged from 18 to 52 with an average age of
21.43. 33 participants identified as male, 39 as female, 1 non-
binary, and 1 preferred not to disclose. When asked about
their previous experience with Overcooked on a scale of 1 to
7 (1 being no experience), participants reported an average
of 1.45, indicating that the majority of our participants had
no or limited experience with the game. As our primary
objective is to test predictive ability with unseen humans,
we randomly select 59 participants for our training set, 5
participants for our validation set, and 10 participants for our
test set. All participants were required to have normal vision
(20/40 or better) without contact lenses to ensure that the
eye capture system would be effective. Prior to participating,
volunteers signed an informed consent document approved
by the IRB at the Army Research Laboratory (ARL 23-079)
in accordance with the Declaration of Helsinki.

5) User Study: Participant were required to complete an
online demographic survey prior to their in person session.

Upon arrival, participants signed a consent form, and
were then positioned around 70cm away from a display
and attached eye-tracking device (Tobii ProSpectrum), at
which point a five-point calibration was executed using the
Tobii Eye Tracker Manager (2.6.0) Fig. 1. Subsequent to
calibration, the accuracy of eye tracking was confirmed via
real-time gaze tracking, with mandatory recalibration for any
validation point discrepancies exceeding 1.5◦.

Following this, a Lab Streaming Layer (LSL) stream was
started that broadcasted the eye gaze data (including, but not
limited to, the right and left eye x and y coordinates relative
to the display, as well as pupil dilation collected at 300Hz),
the game data (including, but not limited to, the game states,
team actions, the reward, and instance of collisions), and the
keyboard data and mouse data. All data was recorded in xdf
files. See Fig. 1 for depiction of the setup. Between each
round, we additionally collected the participants answers on
five statements adapted from [36] using a 7-point Likert scale
[37] ranging from strong disagreement to strong agreement.
These statements pertained to team fluency, perceived role
significance, trust in the agent, understanding of agent ac-
tions, and the agent’s cooperativeness.

B. Data Processing

To enable information to be readily fed into neural net-
works, we first clean and process collected data. We use
[13]’s lossless state encoding function to encode the game
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Fig. 3. An overview of the processing method to create representations of eye gaze data, gameplay data, and enable a combination of the two for a single
timestep. The representations are designed to be easily fed into modern neural networks.

states into a grid representation of shape height x width x
27, where each of the 27 channels contains information about
different in-game objects or players. For the eye gaze data,
we first average the x and y pixel coordinates of the two
eyes. If the gaze data for a single eye is null for a given
sample, we use the data from the only valid single eye data.
If the gaze data is null for both eyes for a given sample, we
exclude that sample. We then map the pixel coordinates to the
corresponding tile in the game’s grid environment. During
this process, we filter out all eye gaze samples where the
participant is not looking within the boundaries of the game
environment. Since the eye gaze data is sampled at roughly
300Hz compared to the 5Hz (or FPS) of the gameplay data,
we have approximately 60 eye gaze data points per gameplay
timestep. To enable the combination of gameplay data and
eye gaze data, we create eye gaze heatmaps of the same
shape as the underlying game grid, and populate the grid
with the ratio of gaze samples that fall within the boundaries
of each tile. A visual representation of our method is shown
in Fig. 3. To compare our method to the method used in
[14], we additionally map each eye gaze sample to a game
grid tile and classify the sample as the human looking at
their own agent, looking at their teammate, or looking at the
environment. For each game timestep, we calculate the ratio
of samples in each of these three bins.

After processing, we can readily use five input representa-
tions for a given number of timesteps. 1) a lossless game state
encoding per game timestep (Game Data), 2) an eye gaze
heatmap per game timestep (Eye Gaze Data), 3) a combined
state encoding and the eye gaze heatmap per timestep (Game
Data + Eye Gaze Data), 4) the average heatmap across all
twenty timesteps (Collapsed Eye Gaze), and 5) the average
ratio of eye gaze samples that map to the human’s agent,
teammate, environment across all timesteps (Gaze Object).

We use three different labels from our dataset. The first
are the humans levels of agreement on the likert question:
”I trusted the agent to do the right thing:”. This ranges

from 0 (strongly disagree) to 6 (strongly agree) with 3 being
neutral. Second, for each agent-layout pair, we bin all scores
in tertiles and label rounds by the tertiles they scored in.
Scores in the bottom tertile would be in bin 0 (beginners),
the middle tertile in bin 1 (intermediates), and the top tertile
in bin 2 (experts). We use these score tertiles as a proxy
for human proficiency. Third, we calculate when the human
player completes one of the eleven different subtasks by
identifying each time they perform an interact action and
inspecting the change in state. We then back label each
timestep since the previous subtask completion with the
completed subtask. We use these subtask labels to predict
a human’s future intents. We note here that for trust and
proficiency, there is a single label for a full 400 timestep
round. For intent, there are many subtask labels in a single
round, and the duration of a subtask label is highly variable
and dependent on which task is being performed, the current
layout, and the proficiency of the human.

As this data is collected from a human study and not hand
curated, class distributions are not perfectly balanced. Re-
porting accuracy in this case can over state the performance.
Due to this, we use an F1 score as our primary metric, as
F1 scores incorporate both precision and recall in its final
output. We additionally include a baseline model that always
predicts the majority class in all our results.

C. Models

We train two types of models to predict our labels from
the input data. For the input data types that retain time-series
information—game data, eye gaze data, game data + eye
gaze data—we first flatten the timestep representations, as in
Fig. 3. We then apply a linear layer to encode them into a
token embedding size and pass the first 20 timesteps through
a transformer model [38]. To capture the temporal dependen-
cies in the data, we employ a causal transformer architecture
[6]. Specifically, we generate a causal attention mask that
ensures each output token can only attend to the previous
tokens in the sequence. This masking mechanism is crucial



Fig. 4. F1 scores over time for different implicit human signals predicting human proficiency, trust, and future intents starting at timestep 0 of each trial.
The top row of graphs shows the per-timestep prediction outputted by our transformer model that can handle time-series data. The bottom row shows the
cumulative prediction of all past timesteps. Dotted lines represent methods that aggregate over time and use the full 20 second window for their prediction.

for preventing information leakage from future timesteps and
enabling the model to learn meaningful temporal patterns. To
prevent overfitting, techniques like dropout and layer normal-
ization are applied in positional encodings and transformer
layers. Each output token is fed into a linear layer to get
the appropriate number of logits for the task at hand. We
use a cross-entropy loss between the logits and ground truth
labels at every timesteps and the RAdam optimizer [39] to
train the model. We use the same architecture parameters
as the base model in [38]. We perform a grid search on
learning rate: lr ∈ {1e − 5, 3e − 5, 1e − 4}, batch size:
bs ∈ {32, 64, 128}, warmup steps: ws ∈ {500, 1000, 2000}
and found lr = 3e− 5, bs = 128, and ws = 2000 provided
the best results.

For the two representations that aggregate over
timesteps—collapsed eye gaze and gaze object—we
average their representations over all 20 timesteps and then
feed the aggregated input into a three layer multi-layered
perceptron with 128 hidden units. We use the same loss
function and optimizer. We perform the same grid search
excluding warmup steps which are transformer specific and
found lr = 1e− 4 and bs = 128 provided the best results.

D. Data Release

An anonymized version of the collected data and the code
used to process it can be found online1. The dataset contains
XDF files that include all eye gaze data at 300Hz and all
gameplay data at 5Hz. Additionally, they include keyboard
and mouse data that were not utilized in our analysis. In
addition to the XDF files, the datset contains the results of

1https://hiro-group.ronc.one/overcooked-eye-gaze-
dataset hosts the dataset. https://github.com/HIRO-group
/HAHA/tree/EyeGaze hosts the code used to process this data.

the likert scale questions, which can be mapped to the XDF
files using anonymized user and trial ids.

IV. EXPERIMENTAL DESIGN

With the collected data, we set out to answer the following
three research questions. RQ1: How does the predictive
power of eye gaze data compare to the predictive power
of gameplay data and to the combination of both? Core
to our contributions is a thorough analysis of the predictive
power of gaze data compared to gameplay data. To this end,
we train a causal model per agent-layout combination on
the first 20 timesteps of each round for each of our three
prediction labels: trust, proficiency, and next subtask to be
completed.

RQ2: How does aggregating eye gaze data along spatial
and temporal dimensions effect its predictive power?
Recent work has often aggregated eye gaze data across
different dimensions to simplify the input space [14], [33].
This immediately poses the question of if and by how much
these simplifying aggregation techniques are impacting the
predictive power of eye gaze data. To test this, we compare
the predictive power when using the full time series eye gaze
data to two lossy methods. In the first method, we average
the heatmap across timesteps, which collapses the temporal
dimension of the data and that we name collapsed eye gaze.
In the second, inspired by the approach used in [14], we
collapses the spatial dimension and only looks at the ratios
of eye focus on the user themselves, the teammate, and the
environment. We name this method gaze objects.

RQ3: Does the predictive power of eye gaze and
gameplay data differ between the start of a new task
and during continuous execution? Lastly, we hypothesize
that a human’s work flow may change between the start of a
new task and when they have been performing the same task

https://hiro-group.ronc.one/overcooked-eye-gaze-dataset
https://hiro-group.ronc.one/overcooked-eye-gaze-dataset
https://github.com/HIRO-group/HAHA/tree/EyeGaze
https://github.com/HIRO-group/HAHA/tree/EyeGaze


for a while. If true, we expect to see a difference in game
play and gaze data patterns. To examine this, we compare
the predictive power of eye gaze and gameplay data on when
focusing on the first 20 timesteps of gameplay compared to
focusing on timesteps 200 to 220.

V. RESULTS

RQ1: Comparing eye gaze data to gameplay data.
Section III-B depicts the predictive power of eye gaze data,
gameplay data, and their combination across multiple human
mental and behavioral factors. We first focus on the intent, or
“next subtask” prediction, shown in Section III-B c). As this
particular analysis only considers the inital 20 time steps
of the game, almost all participants will retrieve an onion
as their first subtask, leading to a very high f1 score early
on. However, whereas the models that use game data and
the combination of game and gaze data maintain a high
predictive ability, using ungrounded gaze data on its own
leads to a drop in performance at later stages. This is likely
because the gaze data only provides information on where
the human is looking, but without the game data, there is
no information on what the human is looking at. While the
model can memorize the location of fixed objects in the
environment to provide a better than random prediction, there
is no way to know where either agent is situated or to model
the dynamic changes to the environment. In a situation where
the human looks at the location where a pot is, for example,
from ungrounded eye data alone it would be difficult to
ascertain whether the human is going to drop an onion into
the pot, retrieve a completed soup from the pot, or perhaps
check if their teammate is performing either of these actions.

We next focus on the proficiency and trust predictions,
shown in Section III-B a) and b). For these, since the
labels are identical for an entire round, we provide two
versions of the graph. The top row of graphs show the
individual predictions at each separate timestep, whereas the
bottom row of graphs averages all the probabilities up to
and including the current timestep. These results show a
clear trend where the predictive power of gameplay data
starts near majority class prediction, and consistently trends
upwards. This is expected because the game’s initial state is
the same in all trials, and the model can refine its prediction
as trajectories deviate toward or away from optimal paths.
Notably, game data achieves a high performance within 20
timesteps.

Eye gaze data alone provides a strong predictive signal
very early on, spiking around timestep 3 and 4 in both the
trust and proficiency predictions. A qualitative analysis of the
eye gaze and behavior at the start of the game showed a trend
where the participants would first look at their teammate,
then switch their focus to their agent before performing
their first productive action. For more experienced players,
this shift would occur around this threshold of timestep
3− 4, whereas for less experienced players, it would occur
later, usually between timesteps 7 and 15, aligning with the
results we see here. Similarly to the subtask prediction, as
the players deviate away from the start state, the gaze data

lacks necessary game information and the models start to
lose some of its predictive ability. However, as seen in the
bottom row, this can be significantly mitigated by using the
cumulative probabilities of all predictions.

Lastly, using a combination of eye gaze data and gameplay
data provides the best of both modalities, requiring little data
to get a good performance, and continuing to improve with
more data. Unlike the ungrounded gaze only models, the
gaze here can be attributed to objects in the environment,
and we see no drop in performance. In all cases, using both
modalities provides the best or tied for best performance.

RQ2: The effect of gaze data representation. We next
investigate different methods to represent eye gaze data.
Specifically, we compare the full time series representation
utilized in the previous section to the collapsed gaze and gaze
object representations. We note the latter two approaches
use all timesteps in question for their prediction, and there-
fore are only comparable to the final timestep prediction.
In the cumulative F1 approach (bottom graphs), we see
that the time series approach matches or outperforms the
other approaches. However, the collapsed eye gaze approach
performs nearly as well using a simpler model. In contrast,
the gaze object approach of [14], which collapses the spatial
dimension and only uses the frequency at which humans look
at different objects, drastically reduces performance. These
results indicate that the spatial dimension of gaze data is
more useful for predicting proficiency and trust compared to
the temporal dimension.

RQ3: Task time We now examine how predictive power
changes as humans move from starting a new tasks to a
phase of continuous execution of the task. Fig. 5 show
the predictions curves when we start predicting at timestep
200. Compared to the previous results, there are two trends.
First, gameplay data is now strongly predictive from the
first observed timestep, indicating that the state space itself
contains a significant amount of information about the quality
of play up to that point. Second, we see that the per-
timestep prediction of the ungrounded gaze model no longer
has the spike in prediction accuracy at the beginning, but
rather consistently predicts trust and proficiency at a similar
level to its predictions around timesteps 20. Notably, even
without this beneficial early bump, the cumulative prediction
accuracy (bottom graphs) increases over time and achieves
a substantially higher F1 score than any single timestep,
indicating that even with no grounding, repeated measures of
eye gaze data contain a rich signals about human behavior.

VI. DISCUSSION AND CONCLUSION

In this paper, we collect a large dataset of human gameplay
and gaze data while collaborating with a variety of different
agents, specifically a random agent, a self-play(SP) agent
and a HAHA [34], in the fast-paced simulated environment
of “Overcooked.” We then use this dataset to thoroughly
examine the predictive ability of various implicit human sig-
nals. We highlight the following findings: 1) Both eye gaze
data and gameplay data provide strong predictive signals for
human proficiency, their trust in an autonomous agent, and



Fig. 5. F1 scores starting at timestep 200. Refer to Section III-B for a full description of the figure

their intent; 2) eye gaze data, even when not grounded in the
environment, provides its predictive power early on, and is
superior to gameplay data at the start of tasks when humans
are deciding how to act and few actions have been performed.
As more human behavior is observed, gameplay data catches
up and eventually surpasses ungrounded eye gaze data; 3)
Combining both eye gaze data and gameplay data provides
the best overall predictive ability; 4) Caution should be
applied when aggregating eye gaze data. If eye gaze data
is to be aggregated, our findings support aggregation over
the temporal dimension as preferable over aggregation over
the spatial dimension. We note that while in our experiments
temporal aggregation only had a minimal impact, certain
tasks or domains may be more sensitive to it.

A. Future Work

Our findings underpin two key future research directions.
First, we are interested in investigating the potential for en-
hancing the adaptability and personalization of autonomous
agents by conditioning them on the information collected
about their human teammates. Second, we intend to apply
and extend these findings to real-world human-robot collab-
oration. While we are confident that our general conclusions
will extend to these practical scenarios, a real-world domain
raises number of interesting questions. These include how
to adapt the systems to account for the movement of the
human, how to classify the completion of a human action,
and determining an appropriate frequency to use when delin-
eating timesteps. Additionally, one potential limitation of this
study is that our data was drawn from a participant pool rel-
atively lacking in terms of age, ethnic and cultural diversity.
Considering evidence for the culturally contingent nature of
gaze patterns (e.g., [40]), future work should explore the
cultural nuances of eye gaze as a communicative signal.
This is particularly relevant in diverse and multicultural

settings where human-robot interactions may be influenced
by varying interpretations of gaze behavior.
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