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Abstract— In this work, we introduce LazyBoE, a multi-
query method for kinodynamic motion planning with forward
propagation. This algorithm allows for the simultaneous explo-
ration of a robot’s state and control spaces, thereby enabling
a wider suite of dynamic tasks in real-world applications. Our
contributions are three-fold: i) a method for discretizing the
state and control spaces to amortize planning times across
multiple queries; ii) lazy approaches to collision checking and
propagation of control sequences that decrease the cost of
physics-based simulation; and iii) LazyBoE, a robust kinody-
namic planner that leverages these two contributions to produce
dynamically-feasible trajectories. The proposed framework not
only reduces planning time but also increases success rate in
comparison to previous approaches.

I. INTRODUCTION

Robotic manipulation in complex operational environ-
ments necessitates the integration of constraints at various
levels of abstraction (i.e., kinematics, statics, quasi-statics,
and dynamics) in order to effectively govern the interaction
between the robot and its surrounding environment [1], [2].
Importantly, dynamics extends the foundational principles
of kinematics, statics, and quasi-statics by incorporating the
analysis of forces and torques in robot and object motion
in real-world tasks such as liquid transport [3], deformable
object manipulation [4], and nonprehensile maneuvers [5],
[6] (Fig. 1).

The complexities (and opportunities) introduced by
dynamic-based analysis of motion planning set the stage for
kinodynamic planning, a class of methods that incorporate
these dynamic constraints into planning, consequently ex-
tending classical kinematic or geometric planning methods
beyond the robot’s state space to its control space [7], [8].
Within this scope, kinodynamic planning frameworks can be
broadly classified into two paradigms: sequential and inter-
leaved. Sequential approaches engage first in geometric path
planning and then in time parameterization, a sequence that
may result in dynamically-infeasible trajectories and long
planning times [9], [10]. In contrast, interleaved methods
present a more integrated solution by enabling simultaneous
exploration of state and control spaces, thereby ensuring
dynamically-valid trajectories, if they exist [11], [12]. It is
worth noting that a majority of methods in the interleaved
domain are single-query methods. In a single-query context,
each new planning problem necessitates the reconstruction of
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Fig. 1: Several applications motivate the need for considering
dynamic constraints in motion planning. The payload transport
problem requires the robot to account for the added mass at its end-
effector and its effects on the inertia, Coriolis, and gravity matrices
in the robot dynamics model [13]. Similarly, liquid transport in the
General Waiter Motion Problem imposes acceleration constraints on
the end-effector to ensure spill-free trajectories [3]. Nonprehensile
actions like poking can be used to singulate target objects and
require an understanding of combined robot and object dynamics
[5]. In this paper, we present a method for planning robot paths
while considering its dynamic constraints.

the planning tree, thereby limiting computational efficiency.
This issue becomes of particular importance in kinodynamic
planning due to the higher dimensional space involved. To
this end, our work introduces a multi-query approach in the
interleaved planning domain, aimed at reducing computation
times across multiple planning queries. This contribution
obviates the need to re-explore the state and control spaces
and their corresponding search trees for each new task,
offering a more efficient solution.

More specifically, our planner is conceptually aligned with
the bundle of edges (BoE) framework, which adapts the
probabilistic roadmap method from a kinematic setting to
the kinodynamic domain [14]. The BoE planner employs
a forward search through disconnected, randomized rollouts
of a dynamics model [15]. This process is computationally
demanding due to a large branching factor and is contingent
upon both accurate simulation models and reliable collision
checkers—assumptions that may not hold in complex, real-
world conditions. Crucially, it is these very processes—
forward propagation and collision checking—that contribute
significantly to the computational burden of the planner.
This underscores the need for ‘lazy’ strategies that postpone
these operations until absolutely required, thus achieving a



trade-off between efficiency and accuracy. Toward this goal,
in this work we introduce the concepts of lazy forward
propagation and lazy collision checking in the context of
kinodynamic motion planning for BoE, which we refer to
as LazyBoE. By applying rollouts from the edge bundle
to the planning tree directly without resimulating them,
these techniques not only significantly reduce planning time
but also enable the application of this approach to higher-
dimensional systems commonly encountered in real-world
applications without compromising the asymptotic optimality
guarantees previously established in [15].

In this work, we delineate three key contributions: i)
a novel method for the efficient generation of state and
control space rollouts from the forward dynamics model
of a robot using varying control sequences instead of
traditional piecewise-constant controls, aimed at reducing
planning times across multiple queries; ii) the introduction
of ‘lazy’ forward propagation and ‘lazy’ collision checking
strategies that employ bounded end-state perturbations and
prioritize forward simulations by their likelihood of collision,
thereby mitigating the computational load associated with
physics-based simulations; iii) the LazyBoE kinodynamic
motion planner, a robust framework that capitalizes on the
aforementioned strategies to rapidly and reliably compute
dynamically valid trajectories for complex tasks. We validate
our approach on a 7DoF robot arm, and demonstrate how it
enables a broad class of real-world tasks.

II. BACKGROUND AND RELATED WORK

Kinodynamic planning involves navigating the complex
interplay between the robot’s state space—comprising posi-
tion, velocity, and higher-order derivatives—and its control
space, defined by the set of feasible actions for a given
task. The existing literature mainly bifurcates this analysis
into two approaches: sequential and interleaved. Sequential
methods, such as TrajOpt [16], CHOMP [17], STOMP [18],
KOMO [19], and ITOMP [20], construct a geometric path in
the robot’s state space first and then assign valid controls to
each waypoint. While these methods are advantageous for
their minimal design complexity and capability to handle
non-linear constraints, they have a number of limitations.
They are highly susceptible to the quality of the initial
seed trajectories, often confining trajectories to a narrow
set homotopic classes [16], [21]. Moreover, they generally
lack theoretical guarantees regarding the completeness or
optimality of solutions [10]. Within this line of work, there
exist hybrid methods that attempt to reconcile these limi-
tations by incorporating sampling-based planning, which in
turn brings about theoretical properties such as probabilistic
completeness and asymptotic optimality [10] and permits the
discovery of multiple solution classes [22]. Time parameteri-
zation techniques can also be applied in place of optimization
to assign timesteps to each waypoint in the geometric path
[9], [23], [24].

In contrast to sequential approaches, interleaved meth-
ods cast motion planning as a search problem, alternating
between state space sampling and control propagation to

find a valid trajectory. These methods often employ steering
functions, or inverse models, to delineate a set of controls
connecting two arbitrary points in the state space. For in-
stance, DIMT-RRT utilizes a quadratic steering function to
account for joint acceleration limits and non-zero initial and
goal velocities [25]. AVP computes the range of reachable
velocities at the end of a path, given reachable velocities
at the start of it [26], [27]. LQR-RRT* uses a quadratic
cost function and linearized dynamics in conjunction with
a linear-quadratic regulator (LQR) to connect consecutive
states in an RRT* tree [28], [29]. Notably, the optimization
techniques discussed in sequential methods can also be used
as steering functions in interleaved approaches. In all, these
techniques enable precise goal state attainment, allow to
perform backward searches, and facilitate exact tree connec-
tions in bidirectional searches, thus expediting the planning
process [30]. However, they come with a set of challenges.
Steering functions may not exist or could be difficult to
design for a given dynamical system. Furthermore, exact
state connections may not be reliable in real-world settings
due to uncertainties and the use of optimization as steering
may cause planning to get stuck in local minima [11].

The second variety of interleaved methods involves nav-
igating the state and control spaces using forward control
propagation. Using a random state and action, these methods
determine the resultant state, constructing a tree of dynam-
ically feasible edges [5]. SyCLoP and KPIECE leverage
state space discretizations and guide exploration in low-
coverage areas [31], [32]. SST optimizes path quality via
pruning and heuristic biasing [12]. GBRRT and GABRRT
combine multiple propagation methods and backward tree
costs as heuristic values for bidirectional kinodynamic search
[33]. Other techniques involve pre-mapping the space of
valid motions and conducting a search over this state and
control space discretization [15], [34]. Existing approaches
that exploit lazy strategies for collision checking involve
learning-based methods [35] and evaluating paths on an
as-needed basis [36]–[38]. We take an empirical approach
by computing a collision probability for each kinodynamic
action in our state and control space discretization.

Overall, interleaved approaches are easy to design since
they leverage general-purpose physics simulations, explore
both state and control spaces uniformly, and easily adapt to
environmental interactions and multi-object systems. How-
ever, they may face slow convergence owing to costly
simulation and collision checking methods. Next, we outline
how our contribution mitigates these issues, paving the way
for fast computation of asymptotically optimal solutions.

III. METHODS

In this section, we present LazyBoE, our multi-query
kinodynamic motion planner. The planner relies on two key
contributions: 1) a method for generating a bundle of edges in
order to provide a discrete approximation to the robot’s state
and control spaces (Section III-B), and 2) a quantification
of lazy propagation and collision probabilities to reduce
planning time (Section III-C). These pieces enable us to
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Fig. 2: Perturbing the start state of an edge ei ∈ E (black arrow)
by a maximum of θ and applying ei.u for duration ei.∆t results in
a perturbed end state (q̂f ). Applying multiple random perturbations
for ei (grey arrows in (a), green and red arrows in (b)) allows us
to estimate ei.Plazy prop = Pr(∥q̂f − ei.qf∥2 < θ) = 2/4 and
ei.Pcollision = 1/4 for the provided example. We repeat this process
for all edges in E to integrate lazy approaches to simulation and
collision checking in LazyBoE.

design and implement a planner that defers computation in
the form of simulation and collision-checking until there is a
viable path that minimizes a heuristic value (Section III-D).

A. Problem Setup

We formalize the problem of kinodynamic motion plan-
ning using edge bundles similarly to [15]. The robot state
space Q ⊂ Rm is defined where q ∈ Q represents the
joint angles of an m-dimensional robot. The control space
U ⊂ Rm contains elements q̇ ∈ U that represent joint
velocities. An edge bundle is a set of disconnected edges
generated by applying randomly sampled control parameters
to random robot states for random time durations, thereby
connecting random start states to resultant end states:

E = {(q0, q̇,∆t, qf ) | q0, qf ∈ Q, q̇ ∈ U}

such that f(q0, q̇) = qf , where f(·) defines the forward
dynamics model of the robot and q̇ = (q̇0, · · · , q̇f−1)
represents a sequence of joint velocities. The i-th edge is
denoted as ei and defined as the tuple (qi0, q̇

i,∆ti, qif ). The
objective of LazyBoE is to find a continuous, collision-free
trajectory

π(t) : [0, 1] → Qfree ⊆ Q, π(0) = q0, π(1) = qf

through the state and control space discretization enabled by
E , while respecting the dynamics constraints D of the robot.

B. Edge Bundle Construction with the Robot Dynamics
Model

The backbone of our planner lies in constructing a discrete
approximation of the robot’s state and control spaces, as a

result capturing the nuances of real-world dynamics includ-
ing nonlinearities like joint friction. Defined as a bundle
of edges E , this approximation is a collection of valid,
disconnected, and randomly generated forward rollouts of
the robot dynamics model over a variable duration ∆t. This
method of edge generation with a sampled duration is known
as Monte Carlo propagation and ensures the preservation of
asymptotic optimality in kinodynamic planning algorithms
[39]. In order to enable uniform and rapid exploration of
the control space, we propagate a sequence of randomly-
sampled joint velocity actions, q̇ = (q̇0, · · · , q̇f ) ∈ U ,
from a randomly sampled state, q ∈ Q. In addition to
providing a broader local reachability range (and as a result
expanding the explored volume in the state space) from a
given state, varying joint velocities over a single propagation
leads to longer-duration edges as it prevents the robot from
becoming locally “locked” along fixed controls. Moreover,
it is necessary that these Monte Carlo propagations are
collision-free and obey the Euler-Lagrange robot dynamics
model D to ensure validity in real-world execution. Our
approach to bundle generation can be extended to other robot
embodiments as long as a valid dynamics model is provided.

As an example, we focus on one particular embodiment
and use an analytically-derived and empirically-tuned dy-
namics model for the 7 degrees-of-freedom (DoF) Franka
Emika Panda arm [40]. This analytical model is defined as
τ(q, q̇, q̈) = M(q)q̈+C(q, q̇)q̇+ g(q) + f(q̇), where q, q̇, q̈,
and τ are 7× 1 vectors representing the robot’s joint angles,
velocities, accelerations, and torques, respectively. M is a
symmetric, positive-definite 7×7 joint inertia matrix, C is a
7×1 matrix that captures the Coriolis and centrifugal effects
caused by robot motion, g is a 7 × 1 vector encapsulating
the torque required by each motor to counteract gravitational
forces, and f is a 7 × 1 vector that quantifies the torques
necessary to counteract friction at the joints. The model is
used to verify whether the propagated joint velocity sequence
q̇ obeys the robot torque limits.

Furthermore, validating an edge involves three classes of
checks: collision checks, robot state limit checks, and conti-
nuity checks (Algorithm 1, Lines 20-22). Acceptable ranges
for the state and control variables and additionally, dynamics
quantities are defined as qmin < q < qmax, q̇min < q̇ <
q̇max, q̈min < q̈ < q̈max, and τmin < τ < τmax. In addition,
the dynamics simulations must obey continuity constraints
due to the stringent control requirements of this robot. For
a given static environment, edges are validated to be free
of self-collision and environmental collisions via geometric
collision-checking algorithms. This incurs a one-time cost
since the edges can be used lazily for a significant portion
of our motion planning process. We next explain how we can
compute useful quantities from this generated edge bundle
to enable lazy kinodynamic planning.

C. Edge Perturbation for Lazy Propagation and Collision-
Checking

The task of generating an edge bundle that uniformly
samples the state and control spaces of a robot is a com-



Algorithm 1: LazyBoE
Input: Start State q0, Goal Region Qgoal, Edge Bundle E ,

Neighborhood Radius θ
Output: Path π

1 π ← ∅
2 V ← {q0}
3 while V ̸= ∅ do

// equivalent to SELECT(.) in [15]
4 v ← PICK NODE(V)

// update π to lower cost path
5 if v ∈ Qgoal and !IS LAZY(EDGE TO(v)) then
6 if cost(π) > cost(PATH TO(v)) then
7 π ← PATH TO(v)

8 if IS LAZY(EDGE TO(v)) then
9 Eneighbor ← RADIAL NN(v, θ/2, E)

10 else
11 Eneighbor ← RADIAL NN(v, θ, E)
12 Vnext ← ∅
13 foreach e ∈ Eneighbor do
14 Pselect ← (1− e.Pcollision) ∗ e.Plazy prop
15 apply lazy prop← rand() < Pselect
16 if apply lazy prop then
17 Vnext ← Vnext ∪ e.qf

18 else if !apply lazy prop or !IS LAZY(EDGE TO(v)) or
(IS LAZY(EDGE TO(v)) and
SHOULD TERMINATE LAZY()) then

// simulate
19 enew ← f(v, e.u, e.∆t)
20 if COLLISION FREE(enew)
21 and WITHIN LIMITS(enew)
22 and IS CONTINUOUS(enew) then
23 Vnext ← Vnext ∪ enew.qf

24 V ← V ∪ Vnext

25 return π

putationally intensive process, particularly in the case of a
high-DoF robot and increased environment complexity. A
substantial part of this computational workload is incurred
again during the planning stage, where edges emerging from
θ-regions around planning tree nodes undergo simulation
and collision checks [15]. This θ is dependent on state-
space dimensions and denotes the maximum level of sim-
ilarity in the state space, thereby bounding the set of valid
controls. Additionally, the greedy, heuristic-biased search
strategy used by the BoE planner has the potential to get
stuck in local minima, thereby necessitating a method for
quickly evaluating these greedy paths without simulating
them entirely. This motivates the need for lazy approaches
to simulation and collision-checking in the kinodynamic
setting. More specifically, we need to address the following
two questions for each edge ei ∈ E :

1) Can ei be lazily propagated instead of undergoing a full
simulation?

2) What is the probability that a lazily propagated edge
will result in a collision?

We approach the answers to these questions empirically
by conducting a perturbation analysis on each edge in the
bundle. A disturbance ∆q in the range (0, θ] is added to
the start state for each edge. The resultant end state for an
ei is computed as q̂if = f(qi0 + ∆q, q̇i). In the limit that

the number of perturbations for each edge (p) approaches
infinity, we are able to accurately estimate both the maximum
error in the end state, ∆qif = max(∥e.qf − q̂f )∥2), and the
potential collision likelihood. To address the first question,
an edge viable for lazy propagation is characterized as one
that confines the end-state error within the region radius θ,
so that viable edges for the next level of propagations can
be picked from this fixed θ-neighborhood. However, this
criterion is subjected to a more stringent requirement, as
depicted in Fig. 3, i.e., the end-state error for ei must be
confined to θ/2 if ei undergoes lazy propagation to ensure
the worst-case error between its real simulation and the
following connection to the lazy edge is θ. Put differently, the
probability that an edge can be lazily propagated P i

lazy prop =

Pr(∆qif < θ/2) is the ratio of the number of valid (collision-
free and dynamically-feasible) perturbations for which the
maximum end state error is θ/2 to the total number of valid
perturbations, pvalid (Fig. 2a). Similarly, in response to the
second question, we can quantify the probability that an
edge will collide when lazily propagated, i.e., P i

collision =
Pr(ei collides), as the ratio of the number of edges that
collide to the total number of perturbations p (Fig. 2b).
This is in contrast to prior work which only considers lazy
collision checking in the geometric planning domain and
takes a deterministic approach, iteratively discarding edges
that are not collision-free [36], [38]. The neighborhood-
based control propagation in our work allows for a more
nuanced and stochastic approach to lazy collision checking
by allowing edges to be re-explored, potentially uncovering
paths that would be prematurely eliminated by deterministic
methods. In this work, we primarily deal with self-collisions
and environmental collisions between the robot and its
surrounding environment. These two probability values for
each edge extend the definition of an edge bundle E to the
following:

E = {(q0, q̇,∆t, qf , Plazy prop, Pcollision) | q0, qf ∈ Q, q̇ ∈ U}

These two metrics, associated with each edge, are used to
guide the planner by deciding when to apply lazy methods
for faster planning times.

D. Kinodynamic Motion Planner

In order to reduce the computational costs associated with
dynamics simulation and collision checking, we present a
lazy approach for exploring the space of edge bundles E ,
deferring computation until a viable, low cost approximation
to a true candidate path has been found. Our method, termed
LazyBoE, builds upon the design decisions laid out in the
BoE planner [15]. In addition, it leverages the computed
probabilities Plazy prop and Pcollision and combines them into
the probability of selecting an edge for lazy propagation as
Pselect = (1 − Pcollision) ∗ Plazy prop (Algorithm 1, Line 14).
This encourages edges with a lower collision probability to
be propagated first, while also promoting lazy propagation.
Since the edges are evaluated probabilistically, they can
be used more than once, adding diversity and breadth to
exploration, countering the downsides of the greedy approach
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Fig. 3: LazyBoE can lazily propagate a series of edges from E
(shown in grey) in a way that minimizes heuristic cost. After a
lazy candidate path is found (blue), a full simulation and collision
check is performed along this path (green) to extend the planning
tree (black ). To ensure the highest rate of success when performing
simulation on lazy paths, neighborhood lookup is restricted to θ/2
for lazy search to allow, in the worst case, the maximum error
between the end of a simulated edge and the start of the next lazy
edge to be θ.

as taken by the BoE planner. Stochasticity thereby avoids
local minima and oscillation issues in greedy search.

In the ideal case scenario, all edges can be lazily propa-
gated, enabling us to search through the edge bundle until
the goal is reached and doing a real propagation on the
shortest path from start to goal. However, this does not
hold due to real simulations that may lead to end states
beyond the neighborhood radius θ < θ′ (Fig. 2a), thereby
resulting in Plazy prop < 1 for many edges. Therefore, it
becomes important to identify the termination conditions for
defining when to stop lazy propagation. These termination
conditions (as defined by SHOULD TERMINATE LAZY()
in Algorithm 1, Line 18) are two-fold: i) heuristic value, in
our case, the distance to goal state, starts increasing, or; ii)
lazy propagation path reaches the goal region Qgoal. As a
result, simulation along the lazy path is triggered when these
conditions hold, if the preceding edge is not a lazy one, or
with probability 1 − Pselect (Algorithm 1, Line 18). Next,
we demonstrate how these lazy approaches lead to lower
planning times and higher success rates in comparison to
baseline kinodynamic motion planning algorithms.

IV. EVALUATION

A. Test Setup

We benchmark LazyBoE against a number of kinody-
namic planners with forward propagation, namely RRT [8],
SST [12], and BoE [15].1 We test three variants of SST based
on different selection-to-pruning radius (0.5x, 1x, and 2x).
Each algorithm is evaluated over 25 planning problems, i.e.,
pairs of collision-free, randomly-sampled start and goal joint

1Links to our code, videos, and demonstrations of the experiments are
available here: https://hiro-group.ronc.one/research/lazyboe-icra24.html.

Fig. 4: Our method is able to find the first solution in less time
than baseline approaches, owing to its lazy approach to simulation
and collision checking. Asterisks indicate significance level when
comparing our planner to the baseline methods. ns indicates no
significant difference.

angles, on four metrics: i) time to initial solution in seconds
(Fig. 4), ii) final solution cost as measured by the arclength
of the trajectory in joint angle space (Fig. 5), iii) success
rate denoted by the fraction of trials that resulted in at least
one planned trajectory (Fig. 7), and iv) number of solutions
per planning problem (Fig. 6). This delineation into time to
initial solution and final solution cost is necessitated by the
fact that SST, BoE, and LazyBoE are asymptotically optimal
in nature. All algorithms were implemented in Python 3.8
and evaluated on a 6-core AMD Ryzen 5 laptop with 32GB
RAM running Ubuntu 20.04. Each algorithm was given a
time budget of 60s, except RRT, which terminates on the
first solution.

B. Quantitative Analysis

Our LazyBoE planner outperformed baseline kinodynamic
methods in multiple key metrics. First, it achieved an average
solution time of 1.06s, substantially faster than the other
methods that were in the range [2.18s, 21.94s] (Fig. 4). This
is due to deferred propagation and collision checking, which
enable a more focused search. Of note, despite this significant
performance improvement, LazyBoE ’s final solution cost
was competitive in quality (3.42 cost) to the best performing
alternatives, BoE (3.43 cost) and SST (Fig. 5). In essence,
our method provides efficiency without sacrificing optimality.

The planner also found an average of 3.12 solutions, over
1.5x more than the other methods (Fig. 6). This increased
solution diversity arises from stochastic edge selection and
reuse compared to greedy approaches. Lazily reusing edges
rather than discarding them expands the search frontier
faster. More paths are available to evaluate and iterate on,
thereby directly translating to higher success rates. With
more valid candidate paths approximated and available to the
search, the likelihood of discovering a collision-free solution
path increases substantially. The results validate this, with
LazyBoE succeeding 92% of the time compared to [80 −
88]% for other methods (Fig. 7). In summary, LazyBoE ’s
use of lazy propagation and collisions to minimize wasted
computations allows efficient searches that find high quality

https://hiro-group.ronc.one/research/lazyboe-icra24.html


Fig. 5: The final solution cost, i.e., the solution with the lowest
cost, for our planner is comparable to the BoE planner. Asterisks
indicate significance levels.

Fig. 6: Our planner is able to explore a larger number of solutions
than the baseline methods. RRT terminates after finding the first
solution, but the mean number of solutions is less than 1 because
RRT does not succeed in finding a solution for every planning
problem Fig. 7. Asterisks indicate the significance levels.

solutions quickly, while maintaining a broad exploration.
This quantitative analysis validates lazy techniques can im-
prove performance in kinodynamic planning.

C. Significance Testing

Statistical analysis using the Mann-Whitney U test further
reinforces the results above. p−values for each test are
highlighted in Fig. 4, Fig. 5, and Fig. 6 and marked by ‘ns’
for p > 0.05, ‘*’ for p ≤ 0.05, ‘**’ for p ≤ 0.01, ‘***’ for
p ≤ 0.001, and ‘****’ for p ≤ 0.0001.

LazyBoE ’s speedup improvement is statistically signifi-
cant with respect to most baseline algorithms, with notably
low p−values in comparison to RRT, SST (0.5x), and SST
(2x). However, the comparison with SST (1x) did not reach
statistical significance (p = 0.0529), indicating that the time
difference with this baseline is not conclusive.

For a more robust analysis, we look at the median value,
which provides a more accurate representation of the data’s
central tendency, particularly in the presence of a skewed
distribution. LazyBoE has a lower median cost when com-
pared to various iterations of SST (0.5x) and RRT, demon-
strating a potential advantage. It is worth noting that the cost
comparison with the BoE algorithm did not yield a signif-
icant difference (p = 0.8142), suggesting comparable cost-

Fig. 7: Our algorithm has a higher success rate compared to the
baselines owing to the exploration of a greater number of potential
solutions (Fig. 6).

efficiency between these two algorithms. Our algorithm also
generated a higher median number of solutions compared
to all baselines, with statistically significant results in all
comparisons. In summary, this significance testing reinforces
our claims that LazyBoE offers performance improvements
in terms of both speed and cost-effectiveness.

V. CONCLUSION AND DISCUSSION

In this work, we presented LazyBoE, a multi-query ap-
proach to kinodynamic motion planning that takes advantage
of lazy propagation and collision checking to outperform
existing baselines in a number of key metrics. Specifically,
our method reduces planning time and demonstrates a high
success rate, given its ability to explore a wider range of
solutions. However, our method faces certain limitations. The
varying control sampling for a given Monte Carlo propa-
gation introduces jitter into the trajectory which has to be
smoothed with a low-pass filter before real-world execution.
Future work can explore biased sampling techniques that
consider the history of control states. Due to memory limita-
tions, LazyBoE is confined to a limited subset of the robot’s
state and control spaces. Scaling the approach to cover
the entire robot workspace is a pressing challenge, stem-
ming from memory constraints, especially when planning
dynamically-feasible trajectories that may involve higher-
order derivatives of the state space variables. While strategies
such as selective loading or using a database could alleviate
this, they require significant engineering optimizations.

Beyond the engineering required to scale this method, we
also intend to explore application-centric extensions, such
as planning for heavy payloads, liquid transport, and non-
prehensile manipulation, which can benefit from assigning
task-specific weights to edges for more biased, multi-query
exploration. While our implementation focuses on kinody-
namic planning for robotic manipulation, the foundational
principles of our planner are designed with broader appli-
cability in mind. Generalizing the planner to accommodate
a wider array of kinodynamic planning problems, beyond
the realm of robotic manipulation, represents a promising
direction for future work.
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