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HARMONIOUS – Human-like reactive motion control and
multimodal perception for humanoid robots
Jakub Rozlivek, Alessandro Roncone, Ugo Pattacini, Matej Hoffmann

Abstract—For safe and effective operation of humanoid robots
in human-populated environments, the problem of commanding a
large number of Degrees of Freedom (DoF) while simultaneously
considering dynamic obstacles and human proximity has still not
been solved. We present a new reactive motion controller that
commands two arms of a humanoid robot and three torso joints
(17 DoF in total). We formulate a quadratic program that seeks
joint velocity commands respecting multiple constraints while
minimizing the magnitude of the velocities. We introduce a new
unified treatment of obstacles that dynamically maps visual and
proximity (pre-collision) and tactile (post-collision) obstacles as
additional constraints to the motion controller, in a distributed
fashion over surface of the upper body of the iCub robot (with
2000 pressure-sensitive receptors). This results in a bio-inspired
controller that: (i) gives rise to a robot with whole-body visuo-
tactile awareness, resembling peripersonal space representations,
and (ii) produces human-like minimum jerk movement profiles.
The controller was extensively experimentally validated, includ-
ing a physical human-robot interaction scenario.

I. INTRODUCTION

As robots are leaving safety fences and starting to share
workspaces and even living spaces with humans, they need to
function in dynamic and unpredictable environments. Highly
redundant platforms like humanoid robots have the possibility
of performing tasks even in the presence of many constraints
and obstacles. Given the dynamic nature of obstacles and real-
time constraints, reactive motion control rather than planning
is the solution. The key to success is whole-body awareness
drawing on dynamic fusion of multimodal sensory informa-
tion, inspired by peripersonal space representations in humans.

We present a reactive motion controller that commands the
upper body of the iCub humanoid robot (2 × 7 Degrees of
Freedom (DoFs) in every arm; 3 torso DoFs), whereby the
two hands can have separate tasks in Cartesian space or a
common task (see Fig.1). Unique to our approach, obstacles
perceived in three different modalities—visual and proximity
(pre-collision) and tactile (post-collision)—are dynamically
aggregated and projected first onto locations on individual
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(a) The robot is approaching the correct card while back bending
to dodge the collision.

(b) The robot is keeping a safe distance from the opponent’s detected
hand.

Fig. 1: iCub robot in action during an interactive game
demonstration.

body parts and then remapped as constraints into the joint
velocity space.

Contributions. We have developed HARMONIOUS, a real-
time reactive motion control system for upper body control of
a humanoid robot sensing and avoiding contact with humans
in its close proximity. Our specific contributions are the
following.

1) HARMONIOUS is human-like in two important as-
pects: (i) it employs multimodal sensing around the
whole body of the robot, “visuo-tactile awareness”
resembling peripersonal space representations; (ii) it
produces minimum jerk movement profiles which are
characteristic of human motion. Together, these provide
a basis for safe and natural human-robot interaction
(HRI)—physical and social.

2) We developed a unified representation of the space
around the robot that feeds a reactive motion controller.
Dynamically moving obstacles ranging from physical
contact with the robot (zero distance, perceived through
touch) to obstacles in close or far proximity can be
remapped onto the robot’s body parts, weighted, and
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transformed into kinematic constraints. Thus, there is a
dense and multimodal representation of a peripersonal
space analogue, which we refer to as the “perirobot
space” (see [1] for more details). It is demonstrated here
by combining touch, proximity and visual sensors, but
other contact-related or range-based sensors could be
used.

3) We have extensively and experimentally evaluated HAR-
MONIOUS and demonstrated its superior performance
to state-of-the-art robot controllers where possible ([2],
[3], [4]). Moreover, to our knowledge, this is the first
work to show real-time control of a humanoid robot
upper torso (in total 17 DoFs, with the possibility of
different tasks for the two arms) faced with tens of
dynamically moving obstacles around the whole robot
body surface. Furthermore, kinematic singularities are
handled through velocity damping and preferred pos-
tures are rewarded in the optimization problem for-
mulation (see Tab. I for an overview). As the final
evaluation, we tested HARMONIOUS in an interactive
board game scenario with the human player dynamically
perceived, simultaneously processing keypoints on its
body, proximity signals, and physical contacts on the
whole robot body.

4) The problem formulation is highly modular and both
the minimization criteria (e.g., motivating preferred pos-
tures) or constraints to the quadratic program (e.g.,
obstacles) can be easily removed or added on the run.

II. RELATED WORK

A. Inverse kinematics

Robot tasks are defined in Cartesian (also called operational
or task ) space while they are commanded in joint space,
some form of inverse kinematics (IK) mapping (q = f(x))
is indispensable. For industrial manipulators, a closed-form
analytical solution is often available, especially for 6 DoF arms
with a so-called spherical wrist. Closed-form solutions are
global and fast to compute. However, such analytical solutions
exploit specific geometric relationships and are generally not
available for redundant robots with an arbitrary kinematic
structure ([5] is an exception). Numerical approaches to IK
come with a higher computational load, but are more general
and applicable to any kinematic chain. TRAC-IK [6] is a state-
of-the-art IK solver that solves IK as a sequential quadratic
programming problem. Lloyd et al. [7] presented an IK
algorithm that uses the third-order root finding method to
increase the speed and robustness of finding IK solutions. The
solution consists of a set of target joint angles only—smooth
trajectory generation and execution have to be taken care of
separately. Pattacini et al. [8] combined a trajectory generator,
a non-linear IK solver, and a Cartesian controller to ensure
human-like minimum jerk movements in both Cartesian and
joint space. None of the above methods can handle dynamic
obstacles in the workspace. An overview of the related work
from this and the following sections is in Tab. I.

B. Obstacle avoidance and differential kinematics

Collision avoidance in static environments can be resolved
at a higher level by using trajectory optimization for robot
motion planning [20], [21], [22]. However, currently, these
methods cannot provide solutions for scenarios like humanoid
robots interacting with dynamic human-populated environ-
ments in real time. The family of methods that alleviate the
above-mentioned problems and that are gaining popularity
recently rely on differential kinematics, i.e. the formulation
of the operational space task in velocity space and a mapping
between desired Cartesian velocity and joint velocity through
the robot Jacobian. Differential kinematics, also referred to as
Resolved-rate motion control (RRMC), dates back to Whit-
ney [23]. This method is inherently local—depends on the
current robot configuration and the corresponding Jacobian—
and as it provides joint velocities, it can be directly employed
for motion control (without separate trajectory generation).

Inverse differential kinematics methods rely on some form
of Jacobian inverse (q̇ = J−1(q)ẋ), more often pseudo-
inverse when J is not square, like for redundant robots. The
damped least squares (DLS) method [9], [10], [11] is preferred
over Jacobian pseudo-inverse or transpose as it “dampens”
the motions in the vicinity of kinematic singularities. To
dodge obstacles in redundant robots, self-motion, i.e. the
possibility to use the null space of the solution for additional
tasks, is exploited [24], [25], [26], [27]. The advantage of
these approaches is that the problem has a clear hierarchical
structure that allows to set priorities. For example, Albini et
al. [24] define obstacle avoidance as the primary task and the
reaching target uses the null space. The disadvantage is the
limited flexibility of the problem formulation in face of many
(some dynamically appearing) constraints or their changing
priorities.

Alternatively, the motion control task can be defined using
the forward differential formulation, searching for joint veloc-
ities q̇ that best match the desired Cartesian velocity of the
end effector ẋ, thus minimizing ||ẋ−J(q)q̇||. To this end, it is
possible to use quadratic programming (QP) optimization with
a quadratic cost function and linear constraints [2], [12], [13],
[14], [15], [16], [28]. To avoid singular configurations, two
options are usually given: add manipulability maximization to
the cost function [2], [15] or dampen joint velocities when
close to singularities [12], [13], [29]. In addition, undesirable
configurations can be avoided by extending the optimization
cost function to motivate the robot to be close to the middle
of the joint limits [12] or close to the robot resting position
[8]. In the case of the QP problem, obstacles are represented
as linear inequality constraints allowing motions in tangential
directions improving target reachability [2], [12], [13].

Most of the mentioned works do not solve self-collisions
explicitly. The exceptions are [13], where self-collisions are
solved by adding additional obstacle points for robot links
and the end effector, and [17], where a neural network is
trained to favor configurations far from self-collision states.
Moreover, De Santis et al. [30] presented an algorithm for
real-time generation of self-collsion avoidance motions using
repulsion forces converted to avoidance torques. Unlike most
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Work Control problem React. obs.
avoidance

Sensory modalities
to perceive obstacles

DoF
shown

Singularities
handling

Pref. posture
motivation

Ori. error
minim.

Explicit
traj samp.

Ours DiffK - QP problem Lin. ineq. constr 3 - vision, proximity, touch 17 Velocity damping Yes Yes Yes
[6] IK - Sequential QP - - 15 No No Yes No
[7] IK - Jacobian based - - 16 Damped variant No Yes No
[8] IK - Nonlinear opt. - - 7 No Yes Yes Yes
[9] DiffK - Damped LS Lin. ineq. constr. 0 - known obstacles 8 Damped LS No Yes No
[10] DiffK - Pseudoinverse Potential field 0 - known obstacles 7 No No Yes Yes
[11] DiffK - Pseudoinverse Repulsive vector 1 - vision 7 No No No No
[2] DiffK - QP problem Lin. ineq. constr. 0 - known obstacles 7 Max. manipulability No Yes No
[12] DiffK - QP problem Lin. ineq. constr. 2 - proximity, touch 7 Velocity damping Yes No No
[13] DiffK - QP problem Lin. ineq. constr. 1 - proximity 7 Velocity damping No No No
[14] DiffK - QP problem Lin. ineq. constr. 0 - known obstacles 7 No No Yes No
[15] DiffK - QP problem - - 12 Max. manipulability No Yes No
[16] DiffK - QP problem Lin. ineq. constr. 0 - known obstacles 6 No No Yes No
[17] IK - Nonlinear opt. Cost function 0 - known obstacles 8 Max. condition number No Yes No
[18] Operational space control Potential field 0 - known obstacles 6 No No Yes No
[19] ERG + PD control Potential field 1 - vision 7 No No Yes No
[3] IK - Nonlinear opt. Repulsive vector 2 - vision, touch 10 No No Yes Yes

TABLE I: Comparison of different approaches to solving the inverse kinematics problem. Control problem acronyms are:
differential kinematics (DiffK), inverse kinematics (IK), quadratic programming (QP), least squares (LS), and explicit reference
governor (ERG).

of the mentioned controllers that presented solutions of the
IK problem for a single-arm robot, Tong et al. [15] proposed
a four-criterion-optimization coordination motion scheme for
a dual-arm robot that deals with coordination constraints
and physical constraints. However, their approach does not
consider obstacle avoidance and the torso joints of the dual-
arm robot.

To represent obstacles, artificial potential fields [18], where
obstacles are repulsive surfaces that repel the robot from the
obstacle, can be used [19], [31], [32]. Park et al. [10] presented
a dynamic potential field for smoother avoidance movements.
Repulsive vectors in Cartesian space are shown in [11] and
later used in [3], [4].

C. Human-like motion generation

Several controllers can work as explicit local trajectory
generators to sample the trajectory between the start and the
target pose. The algorithm in [32] combines control with path
planning and can handle arbitrary desired velocity profiles for
the robot. The Cartesian controller [8] produces human-like
quasi-straight trajectories with minimum-jerk profiles charac-
teristic of human motions. A reactive controller in [3], [4] uses
the minimum-jerk trajectory sampling as in [8]. Suleiman [16]
proposed an algorithm for implicit minimum jerk trajectories
by replacing joint velocities by joint jerk as control parameters
in the optimization problem.

D. Sensing of obstacles and contacts

To make safe movement of a robot in a cluttered or
human-populated environment possible, obstacles need to be
perceived in real time and processed either before a collision
happens or immediately after contact with the robot. We will
focus on perception in the context of HRI.

To sense at a distance, RGB-D cameras are frequently
adopted [11], [33], [34], [35], [36]. Depth information can
be used to compute a set of spheres that represent obstacles
[35] or to create a depth space representation that is used to
generate repulsive vectors for the robot [11]. Magrini and De
Luca [26] estimated the contact force based on the contact

point detected by a Kinect sensor. Alternative visual sensing
for obstacle detection are tracking systems that follow markers
attached to specific body parts, e.g., a wrist [32] or arm joints
and a head [19]. Aljalbout et al. [37] used a static RGB camera
in simulation and trained a convolutional neural network for
obstacle avoidance.

Collisions with a moving robot may be acceptable provided
that the contact forces are within limits. Collisions need to
be detected, located, identified (e.g., determining the forces),
and, possibly following classification of the collision, reacted
upon (e.g., stop, slow down, retract, etc.) [38]. Force/torque
sensors within the robot structure, together with models of
its dynamics, can be employed. Alternatively, contacts can
be perceived through tactile sensors. We will focus on large-
area sensitive skins. Unlike when force/torque sensors are
employed, collision localization/isolation is easier, even for
multi-contacts. Cirillo et al. [25] developed a flexible skin,
allowing measurement of contact position and three compo-
nents of contact force. Calandra et al. [39] presented a data-
driven method for a fast and accurate prediction of joint
torques from contacts detected by tactile skin. Albini et al.
used robot skin feedback for HRI [40] as well as robot control
in a cluttered environment [24]. Kuehn and Haddadin [41]
introduced an artificial robot nervous system, which integrates
tactile sensation and reflex reactions into robot control through
the concept of robot pain sensation. Some large-area sensitive
skins have been safety-rated and are deployed in collaborative
robot applications (see Airskin and the analysis of its effects
in [42]).

Individual visual sensors—on the robot itself or in other
locations in the workspace—are prone to occlusions (which
can be mitigated by employing multiple sensors [43]). Large
area tactile arrays are distributed over the whole robot body,
but only respond after physical contact. Distributed proximity
sensors provide an alternative: sensing at a small distance over
the whole robot body. Proximity [12], [13] or tomographic
[44] sensors can be used for anticipation of collisions and
contactless motion guidance.

Typically, only one sensor type is used, and the correspond-
ing robot control is more or less dependent on the nature of
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the sensory information. On the other hand, there is a field of
multimodal sensor fusion. Dean-Leon et al. [45] presented a
fusion of pressure and proximity data from multimodal artifi-
cial skin to change the robot’s dynamic behavior, e.g., making
a stiff robotic system compliant. Hierarchical control is often
used together with the integration of several sensors, such as
an artificial skin for collision avoidance with a camera for
position-based visual servoing [46], or a LIDARr for collision
avoidance and a multimodal skin for tactile interaction or
distance/force control [47]. In addition to collision avoidance,
fusion can be used for other tasks, such as opening the door
[48]. Multimodal fusion can integrate more than sensor data
as in [49], where contact location is estimated using a contact
hypotheses fusion approach from multiple sensor modalities,
the context of interaction, and the environment.

Humans posses a dynamically established protective safety
margin around the whole body, drawing on visuo-tactile in-
teractions: Peripersonal space (PPS), e.g., [50]. Roncone et
al. [51], [52] took inspiration from PPS and implemented
visuo-tactile receptive fields on a humanoid robot. Nguyen
et al. [3], [4] deployed this in HRI to feed a reactive motion
controller. As affordable and increasingly accurate sensors of
different types are becoming ubiquitous, it is important and
timely to develop a unified treatment of their signals such
that they can be processed by a single motion controller (see
also [1] where a unified treatment of the perirobot space for
collaborative robot applications is proposed).

E. Comparison of HARMONIOUS with related works

In this work, we present a framework in which RGB-D,
proximity, and tactile sensors are simultaneously processed,
related to the complete robot body, and used to generate real-
time constraints for a whole-body reactive motion controller.

To the extent that this is possible, the main components of
our solution are categorized and contrasted with representative
works from the literature in Tab. I.

We formulate the control problem (second column in Tab. I)
as a quadratic program in velocity space—employing differ-
ential kinematics, similarly to many recent works in this area
[2], [12], [13], [14], [15], [16]. Reactive obstacle avoidance
(second column) is implemented using a linear inequality
constraint (LIC). Importantly, this work is to our knowledge
the first to employ three different sensory modalities (vision,
proximity, touch), in a unified manner, to perceive and avoid
obstacles (fourth column). The fifth column (DoF shown)
lists the number of DoF employed in our approach and in
the literature. HARMONIOUS handles kinematic singularities
through velocity damping. The robot is motivated to favor
joint positions near a preferred posture, e.g., the center of the
joint ranges or a home configuration to prevent undesirable
configurations, unlike most of the works in the literature.
HARMONIOUS can handle position and orientation targets
(Orientation error minimization) and samples the trajectory of
end-effector positions (Explicit trajectory sampling), inspired
by human reaching movements—quasi-straight trajectories
with bell-shaped velocity profiles. The end-effector orientation
sampling is calculated using a computer graphics method slerp

for constant angular velocities, ensuring smooth rotations and
the shortest path between initial and final orientations. In
summary, HARMONIOUS employs state-of-the-art control
problem and reactive obstacle avoidance formulation, but
moves beyond the state of the art in providing a unified
treatment of three different sensory modalities, the number
of DoFs controlled, and incorporation of preferred position
motivation and orientation error minimization. Beyond what
could fit in Tab. I, HARMONIOUS also features self-collision
avoidance and the possibility of setting targets (tasks) for the
two robot arms independently or jointly (bimanual task). To
our knowledge, HARMONIOUS is unparalleled in the scale
of the problem and the number of features it can tackle.

III. MATERIALS AND METHODS

Here we present HARMONIOUS – Human-like reactive
motion control and multimodal perception for humanoid
robots. An overview is provided in Fig. 2. The core of the
solution is the motion controller (red box) and the actual
QP formulation (magenta) which is online fed by the target
trajectory generator (blue box) and the constraints projected
from obstacles (green box).

A. Experimental setup

The experiments were conducted with the humanoid robot
iCub ([53], see Fig. 1), specifically on its upper body with
17 degrees of freedom (DoF) consisting of two 7-DoF arms
and a common 3-DoF torso. The robot was equipped with an
RGB-D camera Intel RealSense D435 placed above his eyes
to track obstacles in 3D, an artificial electronic skin [54] to
detect contacts and their intensity, and two proximity sensor
units [55] with time-of-flight sensors that improve perception
in “blind spots” (back of hands).

B. Motion controller

The main component of our approach is a motion controller
(see the red box in Fig. 2). Our motion controller is based on
reactive kinematic control, in particular the approach called
differential kinematics which is defined as

ν = J(q)q̇ (1)

where ν ∈ Rm is the spatial velocity of the end effector
(m is the task dimension—6 for single-arm version, 12 for
dual-arm version), q̇ ∈ Rn are the joint velocities of the
robot (n is the number of joints) and J(q) ∈ Rm×n is the
Jacobian of the robot for the joint positions q ∈ Rn. This
relation represents a trajectory constraint between the robot
configuration and Cartesian space. In this work, we assume
the reference frame for Cartesian coordinates and Jacobians is
the base of the robot.

The spatial velocity of the end effector is computed from
the current end-effector pose and the desired end-effector pose
in the next time period as

νpos =
xt − xc

ts
, νori =

ϕ(RtRc
T )

ts
(2)
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Fig. 2: HARMONIOUS – overview. The blue box represents the local trajectory sampling. The trajectory towards the target
pose is sampled using a minimum-jerk generator (position) and a low-pass filter (orientation). The target pose is received from
an external target generator. The green box represents the obstacle processing. It takes inputs from proximity sensors, skin parts
(tactile stimuli), and RGB-D camera (visual stimuli) and computes linear inequality constraints to dodge obstacles or react
to the collision that occurred. The obstacle exists virtually for a specific surviving time with a decreasing threat level, giving
humans time to react. The red box represents the controller with a QP solver that solves the differential kinematics problem.
It takes the next desired pose and current joint positions as input. If the problem is feasible, the computed joint velocities are
integrated into new joint positions and sent to the robot. Otherwise, the position constraint is relaxed, and the QP problem is
solved again.

where νpos ∈ R3 is the translational velocity of the end
effector, xc ∈ R3 and xt ∈ R3 are the current and desired next
end effector position, νori ∈ R3 is the rotational velocity of
the end effector, Rc ∈ R3×3 and Rt ∈ R3×3 are the current
and desired next end effector orientation (converted from axis-
angle representation), ϕ represents mapping from a rotation
matrix to an axis-angle representation to obtain angular veloc-
ities using a period time ts exploiting the infinitesimal rotation
assumption (see e.g., [2]).

For our purposes, we can relax the trajectory constraint (the
“reaching task”) by adding a slack variable λ ∈ Rm to help
the controller with finding a solution when other (e.g., safety)
constraints appear:

ν − λ = J(q)q̇ (3)

Then, we formulate the problem as a strictly convex QP
problem with joint velocities q̇ and slack variables λ as
optimization variables. In our cost function, we minimize the
sum of the squared Euclidean norm of the joint velocities, the
distance from the preferred joint positions, and the squared
Euclidean norm of the vector of slack variables. It is formu-
lated as:

min
q̇,λ

µ

2
q̇TWqq̇ +

1

2
λTWλλ+

ch
2

(q̇− q̇n)
T
Wq (q̇− q̇n)

(4)
where diagonal matrices Wq ∈ Rn×n and Wλ ∈ Rm×m

contain the weights of the individual joints and the relaxations
for the trajectory constraint, q̇n are the velocities needed to
reach the preferred (e.g., home) robot configuration, ch is a

weight of the motivation to keep robot close to a preferred
configuration, and µ is a damping factor calculated as:

µ =

{
(1− ω

ω0
)2 + 0.01 ω < ω0, ω0 is a threshold,

0.01 otherwise.
(5)

where ω is a manipulability index [56] computed as ω =√
det(J(q)J(q)

T
) = s1s2...sn, where si is the i-th singular

value of J(q). This damping factor increases when the ma-
nipulability index decreases to zero, implying that the robot
is close to a singularity position (the manipulability index
is zero in that position). The higher damping factor makes
the minimization of joint velocities more important, leading
to lower joint velocities and singularity avoidance [29]. We
assume that the weights (Wq Wλ, ch, and µ) are non-
negative to ensure that the problem is convex. The weights in
Wq corresponding to the torso joints are higher than for the
arm joints, which, through the minimization term, motivates
smaller torso movements, which is more natural.

Apart from the mentioned relaxed trajectory constrained, the
minimization is done with respect to several other constraints,
such as joint velocity and position bounds (see Sec. III-K),
slack variable bounds, collision avoidance (see Sec. III-F),
and other task or kinematic constraints (see Sec. III-J). The
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constraints can be written as follows:

s.t.



ν − λ = J(q)q̇

q̇L < q̇ < q̇U

qL < q < qU

−ε < λ < ε
Aoq̇ ≤ bo

bL,t ≤ Atq̇ ≤ bU,t

(6)

where q̇L,U ∈ Rn,qL,U ∈ Rn, ε ∈ Rm are the lower and
upper bounds for the joint velocities, the joint positions, and
the slack variables, respectively. Ao ∈ Rmo×n and bo ∈ Rmo

define (mo) obstacles avoidance constraints; At ∈ Rmt×n,
bL,t ∈ Rmt , and bU,t ∈ Rmt define other (mt) task
constraints.

C. Dual-arm trajectory constraint

Here, we formulate the problem for two arms with a
common torso. Since we have a common torso of the robot, we
cannot calculate the trajectory constraints for the arms inde-
pendently of each other. Moreover, it is not always possible to
reach targets with both arms simultaneously, conflict situations
are managed by prioritizing one of the arms and calling it the
“primary arm”, and the other is then the “secondary arm”.
Therefore, the trajectory constraint (Eq. 3) for a robot with a
common torso is expanded as:

νposp − λposp = Jp
t,pos(q

t)q̇t + Jp
a,pos(q

p)q̇p

νorip − λorip = Jp
t,ori(q

t)q̇t + Jp
a,ori(q

p)q̇p

νposs − λposs = Js
t,pos(q

t)q̇t + Js
a,pos(q

s)q̇s

νoris − λoris = Js
t,ori(q

t)q̇t + Js
a,ori(q

s)q̇s

(7)

where the subscripts t, p, s represent torso, “primary arm”,
and “secondary arm” respectively. The superscripts pos, ori
represent the relaxation of the constraint of the position and
orientation trajectory, respectively. The single-arm formula-
tion contains only the torso and the “primary arm” part.
J
p/s
a,pos(qp/s) ∈ R3×(n−3),J

p/s
t,pos(q

t) ∈ R3×3 are the transla-
tional velocity components of the Jacobian matrices for arm
and torso, respectively, Jp/s

a,ori(q
p/s) ∈ R3×(n−3),J

p/s
t,ori(q

t) ∈
R3×3 are the rotational velocity components of the Jacobian
matrices for arm and torso, respectively.

Consistent with the arm prioritization, we distinguish two
cases for the limits of the slack variable ε. They are set to
∞ (the deviation is minimized only) or to zero (the equality
constraint without relaxation). In our solution, ε is set to ∞
for all λ except λposp = [0, 0, 0]T . If the equality constraint
on the desired translation velocity of the “primary arm” makes
the problem infeasible, we solve the problem again with the
constraint relaxed to the minimization of the deviation. This
strategy allows the robot to reach a target position with higher
precision if the original problem is feasible and to make it
feasible if the equality constraint is too strict.

D. Local trajectory sampling

The first input to the reactive controller is the trajectory
waypoint for the next time step (see the blue box in Fig. 2).

Given the desired final target pose from an external source
(e.g., a high-level target generator), we compute the desired
next-time pose separately in position and orientation. We use a
low-pass filter in the axis-angle representation for orientation
sampling, which ensures a constant-speed transition between
two orientations. For position sampling, a generator of ap-
proximately minimum-jerk trajectories is employed. Position
samples are generated using a third-order linear time-invariant
dynamical system [8].

We distinguish between streamed targets (e.g., reference
tracking) and individual (reaching) targets. In the first case,
the targets can be skipped (e.g., during collision avoidance),
and only the newest one is important, and the local trajectory
sampling is not applied as it is assumed that the movement
smoothness is handled in the external target generator.

1) Position sampling: The sampling of a time-varying input
xd ∈ R3 expressing the desired positions for the end effector
in Cartesian space is performed by means of a third-order filter,
which is capable of generating output trajectories that exhibit
the property of being quasi minimum-jerk, thus resembling the
human-like movements as described in [57].

We tightly follow the implementation presented in [8],
where the idea is to start from the feedback formulation of
the minimum-jerk trajectory as the solution of the optimal
problem proposed in [58]. The exact solution resorts to a
third-order linear time-variant (LTV) dynamical filter applied
to each coordinate xd (∗) of the vector xd:

 ẋẍ...
x

 =

 0 1 0
0 0 1

−60
(T−t)3

−36
(T−t)2

−9
T−t

xẋ
ẍ

+

 0
0
60

(T−t)3

xd (∗)

(8)
where T represents the execution time.

To circumvent the difficulty posed by coefficients becoming
unbounded for t → T , the authors ran in [8] a second
optimization to find out the third-order linear time-invariant
(LTI) system that can deliver the best approximation of the
output of Eq. 8, minimizing the jerk measure over the same
temporal interval [0, T ].

The resulting LTI system is: ẋẍ...
x

 =

 0 1 0
0 0 1
a
T 3

b
T 2

c
T

xẋ
ẍ

+

 0
0
− a
T 3

xd (∗) (9)

where a ≈ −150.766, b ≈ −84.981, and c ≈ −15.967 are
the constant coefficients found by the optimization, and T is
a parameter (related to the execution time) that regulates the
reactivity of the filter. Throughout our experiments, we set T =
(||xd − x0||/vt) s, where x0 ∈ R3 is the starting position, and
vt is the desired Cartesian speed of movement.

The output x (t) ∈ R3 of the filter in Eq. 9 provides a
sampling of the input xd (t) that is “quasi” minimum-jerk,
being the filter only an approximation of the system (Eq.
8), although the authors in [8] proved that it is reliable and
effective in smoothing out sharp transitions while guaranteeing
bell-shaped velocity profiles.
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2) Orientation sampling: We use the axis-angle representa-
tion for the orientations of the end effector. The orientation is
described by a rotation vector r = [r1, r2, r3]

T
, that encodes

the axis of rotation u = r/||r|| and a rotation angle Θ = ||r||.
Orientation sampling is carried out by interpolation between
two orientations r1, r2 using a spherical linear interpolation,
i.e., Slerp [59], which takes advantage of the fact that the
spherical metric of S3 is the same as the angular metric
of SO(3) for a constant angular speed of movement [59].
Moreover, it travels along the straightest (and shortest) path
on the rounded surface of the quaternion unit sphere.

We first start by creating skew matrices r+,1, r+,2 from
rotation vectors r1, r2. These matrices can be easily converted
to rotation matrices R1,R2 by computing their matrix expo-
nentials (expm function):

R1 = expm(r+,1), R2 = expm(r+,2)

We compute the interpolation between rotations R1,R2 ∈
R3×3 as

slerp(R1,R2, α) = expm
(
α logm

(
R2R

T
1

))
R1, (10)

where the function logm converts the rotation matrices to the
skew matrices of the rotation vectors and α is an interpolation
coefficient given as a period time ts divided by the trajectory
time T = (||xd − x0||/vt) s. Finally, the computed rotations
are converted back to the axis-angle representation.

E. Peripersonal space projection

Roncone et al. [51], [52] proposed a distributed representa-
tion of the protective safety zone for humanoid robots, called
Peripersonal space (PPS). The safety zone is represented by a
collection of probabilities that an object from the environment
eventually comes into contact with that particular skin taxel.
For each taxel, they combined visual information of objects
approaching the body and tactile information of eventual
physical collision. A visual receptive field around the taxel
is represented by a cone that rises from the surface along the
normal.

Nguyen et al. [3], [4] made small modifications to PPS and
used it to ensure safe interaction between humans and robots.
Instead of training the visual receptive fields, they defined
them uniformly for all taxels. In addition, they extended the
reach of the receptive field to a maximum of 45 cm. Due
to compatibility with the original implementation, the taxel
receptive field has a discrete representation with 20 bins
representing the distance from the obstacle with values of col-
lision probabilities. The Parzen window estimation algorithm
interpolates the bins to create a continuous representation.
A combination of the receptive fields constructs a safety
volume margin around each body part. In this work, we added
receptive fields to the upper arm and torso to cover the entire
upper body.

F. Obstacle processing

The processed obstacles are the second input to the reactive
controller (see the green box in Fig. 2). In our setup, we
operate with obstacles detected by visual, proximity, and

tactile sensors. However, our approach is universal in modal-
ities. The processed obstacles, called collision points (C), are
represented by their projected position on the robot PC ∈ R3,
collision direction nC ∈ R3, threat level at (i.e., scaled
sensor measurement) and a gain VC representing the severity
of the information; for example, tactile events can have the
highest gain as the collision has already happened. The main
advantage of our representation is that it jointly enables the
post-collision reaction (tactile sensors) and collision avoidance
(proximity and visual sensors).

An obstacle is incorporated into the QP problem as a
linear inequality constraint that restricts movements towards
the obstacle but allows motion in tangential directions. The
constraint limits the approach motion of the collision point
C with Cartesian velocity ẋC ∈ R3 towards the obstacle (in
direction nC) by a maximum approach velocity ẋa (which can
be negative and become the repulsive velocity, Sec. III-G) as

nTC ẋC = nTCJC q̇C < ẋa (11)

where JC ∈ R3×nc is the translational-velocity component of
the Jacobian associated with C and q̇C ∈ Rnc are the joint
velocities of the kinematic chain ending with C. The maximum
approach velocity ẋa is calculated from the obstacle threat
level at as

ẋa = (k1 − VC · at) · k2 (12)

where k1 and k2 are positive values to adjust the constraint
which are described in Sec. III-G. In accordance with Eq. 4,
we can write the obstacle constraints in matrix form (Ai

o ≤ bio)
as

nC
TJC ≤ (k1 − VC · at) · k2. (13)

To prevent jerky motions induced by vanishing obstacle
readings, we apply a linear decay formula to simulate an
obstacle slowly moving away from the robot [12]. Every
obstacle virtually exists for a specific amount of time (called
“surviving time”). For example, the threat disappears once the
robot moves away from the tactile collision. Without virtual
preservation of the obstacle, the robot would return to its
original position even when the obstacle is still there.

Visual obstacles in our experiments are human keypoints
detected by an RGB-D camera. The method for their detection
is based on the work by Docekal et al. [36]. The detected
obstacles (see a schematic illustration in Fig. 3a) are mapped
to parts of the skin where a collision is most likely to occur
using a PPS projection, similar to [4]. For each body part,
we compute one visual obstacle as a weighted average of the
mappings to that body part. The collision direction is the vector
from the estimated contact position on the skin to the obstacle
and the threat level is calculated from their distance.

Proximity sensor data (see a schematic illustration in
Fig. 3b) are not projected onto skin taxels, as these sensors are
placed to cover parts of the robot without the skin; therefore,
there is no skin taxel to which information can be projected.
However, they are projected onto the sensor position. The
threat level is computed from the measured distance, and the
collision direction is the direction vector of the sensor beam.

Tactile obstacles (see a schematic illustration in Fig. 3c)
are processed in the same way as in [3]. Contacts detected
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(a) Visual obstacle projected onto the
left forearm. The blue lines symbolize
the lines of sight of the eyes, not those
of the RGB-D camera for simplifica-
tion.

(b) Proximity obstacle mapped to a sen-
sor position on the left hand.

(c) Several tactile stimuli on the right
forearm (stars) combined into a super
contact PC with a threat level of the
highest measured pressure (red color).

Fig. 3: Processing of obstacles. Obstacles (red cubes or stars) are projected onto the robot body (PC) and connected (yellow
line) to the robot kinematic chain (green line). Each collision point is characterized by a normal direction (purple arrow) and
threat level (color of the circle, red means highest threat).

by artificial skin sensors (taxels) with a pressure above the
threshold value are clustered to super contacts (one per each
body part) to diminish spiking effects and eliminate false
positive detections. The threat level corresponds to the highest
measured pressure in the neighborhood, and the collision
direction is the normal vector of the central taxel.

G. Collision avoidance parameters

Obstacle avoidance constraints (Eq. 12) are parameterized
by two positive parameters—additive k1 and multiplicative
k2. The parameter k1 defines when the maximum approach
velocity becomes the minimum repulsive velocity, that is,
when ẋa is lower than zero. The parameter k1 has a constant
value of 0.3 in our experiments. The parameter k2 scales the
maximum approach velocity. We found that body links cannot
move with the same minimum repulsive velocity due to the
kinematic constitution of the robot. The same scale for all
parts leads to unfeasible constraints for the upper arm and
torso (high value) or small and slow avoidance for the hand
and forearm (low value). From our observation, k2 should
increase from the torso to the hand. In our experiments, k2
is 0.06, 0.06, 0.33, 0.53 for the body parts of the torso, upper
arm, forearm, and hand, respectively.

H. Self-collision avoidance

For self-collision avoidance, we sampled each body link
to obtain sets of points on the robot surface. These points
serve as both virtual obstacles and projected positions on the
robot, which are the closest points of the robot to obstacles.
Due to the kinematic limitations of our humanoid robot, the
projected positions are only on the hand and forearm of the
controlled arm(s), and the virtual obstacles are on the common

torso and the “primary arm” (hand, forearm, upper arm) when
the dual-arm version of the controller is used. The virtual
obstacles are not on the secondary arm because of the arm
prioritization—only the “secondary arm” avoids the collision
with the “primary arm” and not vice versa.

We find the closest pair of virtual obstacles and projected
positions for each combination of body parts. If their distance
dC is less than a threshold, we add the virtual obstacle to
the set of obstacles with at · VC = 1.2 − 20dC ≥ 0. The
coefficients were empirically determined in simulation and on
the real robot to obtain appropriate self-collision avoidance
reactions. The collision point is the projected position of the
obstacle on the robot (PC), the collision direction (nC) is the
vector from the collision point to the virtual obstacle. Finally,
we compute the linear inequality constraint for these obstacles
in the same way as for the external obstacles.

I. Static obstacles

Sometimes, the experiment contains known static objects
that the robot should avoid. The almost same procedure as for
self-collision avoidance can also be used in this case. Virtual
obstacles are sampled from the static object instead of the
robot body. The projected positions are points on the robot
body parts that are in danger of colliding with the object. This
approach was used, for example, to avoid the table during the
interactive game demonstration.

J. Relative position constraint

Other task restrictions can be incorporated into the problem
as (in-)equality constraints. For the bimanual task experiment,
we added one constraint per each axis to keep a specified rela-
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tive position between the hands (end effectors). The constraint
can be written in the vector form as

xp
k+1 − xs

k+1 = drel

where x
p/s
k+1 ∈ R3 are the next (i.e. in timestep k+1) positions

of the end effectors, and drel ∈ R3 is a relative position vector.
This equation can be reformulated for our QP problem with
joint velocities as

xp
k +

[
Jp
t,pos(q

t) Jp
a,pos(q

p)
] [q̇t

q̇p

]
−

xs
k −

[
Js
t,pos(q

t) Js
a,pos(q

s)
] [q̇t

q̇s

]
= drel

(14)

where x
p/s
k ∈ R3 are the current (i.e. in timestep k) positions

of the end effectors, Jp/s
a,pos(qp/s) ∈ R3×(n−3),J

p/s
t,pos(q

t) ∈
R3×3 are the translational velocity components of the Jacobian
matrices for arm and torso, respectively.

K. Joint position constraints

The joint position bounds for the QP problem must be set in
such a way that the robot joint limits are not exceeded. In our
solution, we are inspired by the shaping policy to avoid joint
limits in [8] to maximize reachability in the arm workspace.
It consists of a flat region in most of the joint range. We
replaced the original hyperbolic tangent functions with linear
and constant functions to fulfill the constraint condition of the
QP problem. Since the problem is solved at the velocity level,
the joint position limits are expressed using the joint velocities
for the joint i as:

q̇il = q̇imin · cimin, q̇iu = q̇imax · cimax

where q̇imin and q̇imax are minimum and maximum permissible
joint velocity respectively, cimax and cimin are obtained from
the joint limit avoidance policy as:

cimin =


0 qi < giL
qi−giL
giH−giL

giL <= qi <= giH

1 giH < qi

cimax =


0 GiH < qi

qi−Gi
H

Gi
L−Gi

H
GiL <= qi <= GiH

1 qi < GiL

(15)

where qi is a current joint position, giL and GiH are the lowest
and highest permissible joint position value respectively, and
giH and GiL are the thresholds for the joint position constraints.

IV. EXPERIMENTS AND RESULTS

We prepared seven experiments with a simulated iCub robot
and three with a real one to validate the performance of the
proposed solution and compare it with other solutions. An
overview of the experiments can be seen in Tab. II.

Exp Type Movement Purpose Targets Obstacles
1 Sim P2P Reachability 3x3x3 grid -
2 Sim P2P Smoothness 2 poses -

3 Sim Circular Reference
tracking r = 0.08 m -

4 Sim Circular Self-Coll.
avoidance r = 0.1 m -

5-1 Sim P2P Collision
avoidance 2 poses 1 with vel.

[0, -0.05, 0]

5-2 Sim P2P Collision
avoidance 2 poses 1 with vel.

[0.05, 0, 0]

5-3 Sim P2P Collision
avoidance 2 poses 1 with vel.

[0, 0, -0.05]

11 Real P2P Obstacle
management 1 pose multiple

obstacles

12 Real P2P Obstacle
management 2 poses multiple

obstacles

13 Real Bimanual Whole
solution 1 pose multiple

obstacles

TABLE II: Experiments overview; P2P stands for point-to-
point movement.

A. Experiments in simulation

In simulation, we evaluated the performance of the con-
troller (Sec. III-B) and the trajectory sampling (Sec. III-D).
The first set of experiments aims to assess reachability, move-
ment smoothness, and reference tracking, without obstacles
nearby. Reachability is tested in a reaching experiment (Exp
1) with the targets taken from a grid of 3x3x3 positions in
Cartesian space in random order and randomly switched two
orientations. The positions are the Cartesian product of x =
[-0.23, -0.19, -0.15] m, y = [0.11, 0.15, 0.19] m, z = [0.08,
0.12, 0.16] m, and the orientations are o1 = [-0.15, -0.79, 0.59,
3.06], o2 = [-0.11, 0.99, 0.02, 3.14] in angle-axis notation.
Smooth movement is evaluated in a point-to-point experiment
(Exp 2), where the robot moves between two alternating poses
p1 = [-0.23, 0.26, 0.02, -0.15, -0.79, 0.59, 3.06] and p2 =
[-0.26, 0.03, 0.03, -0.11, 0.99, 0.01, 3.14], where the first
three values are position coordinates in meters and the last
four values are the orientation in angle-axis notation. Finally,
a circular movement experiment (Exp 3) is chosen to validate
the reference tracking. The overview of the experiments can
be found in Tab. II.

In addition to the proposed solution, other alternatives and
state-of-the-art methods are also evaluated. Specifically, we
compare — 1) HARMONIOUS – the proposed solution in
the single-arm version; 2) HARMONIOUS2 – the proposed
solution in the dual-arm version when the goal of the other
arm is to hold a specified position; 3) NEO – the controller
by Haviland and Corke [2]; 4) React by Ngyuen et al. [3];
5) Cart – Cartesian controller for the iCub robot [8], which
is evaluated only in Exp 1 and Exp 2 as it primarily serves
for point-to-point movements and does not feature avoidance
constraints. Controllers 1–4 are evaluated with and without
local trajectory sampling (LTS), described in Sec. III-D. Cart
has its own local trajectory optimization.

The results of the reachability experiment (Exp 1) are shown
in Tab. III. In this experiment, our controller has the highest
number of targets that are reached in 6D pose (i.e., position
and orientation). The target is reached when the end effector
is, at the same time, closer than 5 mm and 0.1 rad to the
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LTS HARMON HARMON2 NEO React Cart
Yes 91.1 % 90.4 % 77.8 % 86.7 % 90.4 %No 90.4 % 89.6 % 77.8 % 82.2 %

TABLE III: Reachability experiment (Exp 1). Success rate
of combined reachability in position and orientation. LTS
stands for local trajectory sampling. Cart has its own local
trajectory optimization. The success rate is computed from 5
repetitions (with a different order of the targets each time) of
the experiment (in total 135 targets).

target. The success rate is computed from 5 repetitions (with
a different order of the targets each time) of the experiment (in
total 135 targets). The impact of the local trajectory sampling
is visible as all controllers have better (or at least the same)
reachability results with sampling than without sampling.

The results of the movement smoothness experiment (Exp
2) show the main impact of the local trajectory sampling
(see Fig. 4a). Position sampling (Fig. 4a left) creates a bell-
shaped Cartesian translation velocity profile typical of human
arm motion [57]. The velocity profile of Cart is the most
similar to the exact minimum-jerk movement, as it is specially
optimized for it. Other versions are almost identical; only
React does not reach zero velocity after 5 s. All versions
without local sampling have snap onset and slow jerky decay.
Orientation sampling (Fig. 4a right) creates a torque-minimal
path for rotation as it travels along the straightest path of the
rounded surface of a sphere and keeps the rotational velocity
constant during movement [59], resulting in a visually smooth
transition between two rotations. HARMONIOUS and NEO
have a smooth angular velocity profile; React velocity profile
is not smooth and does not reach zero after 5 s. Cart uses
the same sampling for orientation as for position, and thus
the resulting angular velocity profile is similar to that for
translational velocity.

In the case of circular movement in the reference tracking
experiment (Exp 3), there is no effect of local trajectory sam-
pling, as a new target is generated for each period (the tracked
reference), meaning that the smoothness of the movement is
handled at a higher level (an external target generator). As
shown in Fig. 4b, HARMONIOUS outperformed others in
reference tracking with the lowest position and orientation
error.

The next experiment is a circular movement experiment
with both arms in opposite directions (Exp 4). It shows how
the dual-arm solution works, particularly arm prioritization and
self-collision avoidance. As the reference controllers are for
single arms only (or separately), only our solution is shown
(without trajectory sampling). Figure 4c shows the trajectories
of both end effectors making circular movements. In this case,
the right arm was selected as the “primary arm”. Therefore,
the right arm successfully tracks the circle all the time and
the left arm prevents self-collision by keeping a safe distance
instead of tracking the circle when the arms are too close.

The last set of simulation experiments tests collision avoid-
ance. For simplicity, the obstacle is virtual and is perceived
without noise, omitting the influence of sensor data processing
on the results. All three experiments are based on Exp 2 and

differ only in the direction of the obstacle: 1) the obstacle
moves along the movement, i.e., in the y-axis direction (Exp
5-1); 2) the obstacle moves towards the robot, i.e., in the x-axis
direction (Exp 5-2); 3) the obstacle falls in the z-axis direction
(Exp 5-3). In this case, Cart is not included in the comparison
because it cannot handle obstacles. React is also omitted be-
cause it was outperformed already in the experiments without
obstacles. More restrictive repulsive vectors were used instead
of linear inequality constraints that allow motions in tangential
directions. Therefore, we compare only HARMONIOUS and
NEO. Figure 4d shows the fraction of targets reached during
the experiment, the fraction of QP problems successfully
solved during the experiments, and the distance between the
obstacle and the closest point of the robot, where we assume
that a distance of less than 25 mm is too dangerous. There is
no significant difference between controllers when the obstacle
moves along the robot’s movement (Exp 5-1). On the other
hand, the obstacle that moves towards the robot (Exp 5-2) is
problematic for NEO. Half of the time, the targets are not
reached within a time limit and the controller cannot solve
the QP problem in almost 40 % runs. Furthermore, small
distances between the robot and the obstacle sometimes lead
to collisions. Unlike NEO, HARMONIOUS has no problem
with collisions or reaching in this experiment (see video S1 in
Multimedia Materials). Our solution also works adequately in
Exp 5-3. NEO did not reach all targets within the time limit,
but the distance to an obstacle is safe.

B. Real robot experiments – collision avoidance

The experiments with the real robot were prepared to eval-
uate the obstacle processing part of the solution, described in
Sec. III-F. We show collision avoidance (visual and proximity
modalities) and post-collision reaction (tactile modality) and
their combination while the robot keeps position (Exp 11, see
video S2 in Multimedia Materials) or moves back and forth
between two points as in Exp 2 (Exp 12, see video S3 in
Multimedia Materials). When visual obstacles are involved,
the iCub gaze controller [60] is used to point the robot gaze
to an appropriate position in the scene, thus compensating for
the robot torso joint movements.

Figure 5 graphically illustrates the experiment using snap-
shots. Figure 6 shows the operation of the main components
of HARMONIOUS on plots, focusing on the left arm of the
robot (the “primary arm” in these experiments). Note that
obstacles at or near the robot hand (visual obstacles near the
hand or forearm, proximity at the back of the hand, or touch at
the hand or forearm) inevitably compromise the task—staying
close to the target—whereas visual obstacles or touch at more
proximal body parts give the robot the possibility to exploit its
kinematic redundancy and fulfill the task while simultaneously
avoiding contacts. Parts of Exp 11—robot tasked with keeping
the end effector position while complying with constraints
from obstacles spawned by the presence of the human—are
shown in Fig. 6a. In Fig. 6a (top), the robot starts in a steady
state without obstacles around characterized by a zero target
distance (first two seconds, green line). Once a proximity
obstacle is detected, the end effector is moving away until the
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(a) Exp 2: End-effector translational (left) and angular (right) velocity profiles during point-
to-point movement and computed exact minimum-jerk translational velocity profile.

(b) Exp 3: Reference tracking error be-
tween desired and actual 6D pose. Circles
and diamonds represent mean and median
pose error, respectively.

(c) Exp 4: Left and right arms movement for our
solution (right set as “primary”). (d) Exp 5: Collision avoidance experiments (Exp 5-1, 5-2, 5-3).

Fig. 4: Simulation experiments results. LTS stands for local trajectory sampling.

proximity obstacle constraint disappears from the controller
and the target position is reached again. Physical contact of
the human with the robot hand (around 5 s) and the forearm
(around 7 and 9 s) generate constraints and trigger avoidance.
Tactile collision with upper arm (12-13 s) and torso (14-15 s)
generate avoidance but do not significantly compromise the
task, as the robot kinematic redundancy is exploited by the
controller.

In Fig. 6a (center), the first 10 seconds are very similar to
the top one. Touch on the forearm causes deviation from the
target while contact with the upper arm is evaded while simul-
taneously staying close to the target. Touch at the hand (5 s)
and proximity signal at the hand (7 s) cause deviation from
the target. At around 12 s, a proximity obstacle at the hand
is evaded, but then avoidance stops as the robot is blocked
by contact with the forearm. Once the touch disappears, the
proximity collision avoidance continues. Finally, when the
proximity obstacle disappears, a tactile stimulus on the hand
causes a fast movement towards the target position.

Figure 6a (bottom) shows a part of the experiment where, in
addition to proximity and tactile obstacles, visual obstacles are
spawned by human keypoint detections in the camera input. At

first, distant visual stimuli for the torso and hand cause only
small end-effector deviations from the target. Then, at 5 s,
a physical collision with the torso and upper arm occurred,
outside the field of view. In contrast, the subsequent tactile
input at the hand (8 s) is also detected by vision. Visual
stimuli persist once the collision ends, preventing the robot
from reaching the target until they disappear. At the end (12-
15 s), we can see the Peripersonal space (PPS) projection to
all parts of the skin causing deviation from the target.

In Exp 12, the robot is asked to move between two targets
every 9 s. Figure 6b show the main system components in
action. Figure 6b (top) starts with an undisturbed reaching
movement to the target, followed by touch on the torso (4 s)
and upper arm (6 s) causing only small deviations from the
target. To evade contact with the forearm (7 s), distance to
target has to increase. In Fig. 6b (center), the human physically
interferes with the forearm during the approach phase, so the
arm has to go around the obstacle to reach the target (2-4 s).
After the target is reached, a proximity obstacle pushes the
hand away from the target again (6-9 s). The effect of visually
detected obstacles is shown in Fig. 6b (bottom). At first, visual
stimuli block the direct way to the target; thus, the arm goes
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(a) Visualization of
visual obstacle avoid-
ance. Green cubes –
target positions for
the robot end effec-
tors; purple cubes –
human keypoints de-
tected, larger cubes
for body and smaller
for hand keypoints;
blue arrows – PPS
projections of obsta-
cles onto robot body
parts.

(b) RGB-D camera view of a human approaching
the robot with keypoint detections.

(c) External view – human approaching the robot.

Fig. 5: Visualizations from real-world collision avoidance
experiments.

around the obstacles to prevent collisions (0-4 s). Once the
target is reached, new visual obstacles appear (5-7 s), forcing
the end effector deviate from the target again. Note that no
particular evasive maneuvers to go around an obstacle to the
target are built in. Such behaviors are rather emergent from
the local behavior of the controller.

C. Real robot – bimanual task

We prepared a bimanual task experiment (Exp 13, see video
S4 in Multimedia Materials) in which the robot holds a sponge
in its hands (see Fig. 7a). The target is prescribed for the
“primary arm” (left) and an additional constraint is introduced
to keep the sponge between the two hands. At the same time,
dynamic obstacles spawn additional constraints and avoidance.
For this experiment, tactile inputs from the robot hands (palms)
are ignored (the robot holds the sponge). This experiment aims
to verify that the dual-arm version works and that other task
constraints, such as the relative distance vector between the
end effectors in this case, can be easily incorporated into the

(a) Exp. 11 – Left arm keep-
ing position. Tactile and proxim-
ity collision avoidance (top and
center), tactile and visual collision
avoidance (bottom).

(b) Exp. 12 – Left arm reach-
ing. Tactile collision avoidance
(top), proximity and tactile col-
lision avoidance (center), visual
collision avoidance (bottom).

Fig. 6: Real-world collision avoidance experiments. Green line
– distance of end effector (robot hand) to target; solid lines
in other colors – distance of visual obstacles to the closest
body part; dotted line — distance to back of robot hand from
proximity sensor; vertical lines/stripes — tactile activations -–
contacts with corresponding body parts.

problem definition (the relative position constraint described
in Sec. III-J).

Figure 7c shows plots from two sequences of the bimanual
task experiment—distances to the target, presence of obstacles
for the right and left arms, and the relative position of the
end effectors. In the left column, we can see the evasive
action of the arms caused by contact with the left forearm
and then a proximity obstacle impinging on the left hand. The
relative position between both hands remained almost the same
as the arms simultaneously moved away from the obstacles,
respecting the bimanual constraint. In the right column, we can
again see how the high number of degrees of freedom helps
to keep the target positions while reacting to contacts on the
proximal body parts—torso and upper arm. Contact with the
left forearm causes deviation from the target but not losing or
squishing the sponge.

Collision avoidance during the bimanual task is more chal-
lenging, as it requires a synchronized movement of both
arms to keep the specified relative position between them.
Therefore, the avoidance movements are smaller compared
to previous experiments. The proximity obstacle avoidance is
portrayed in Fig. 7b.
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(a) Photo from the experiment. (b) Visualization of hand targets
(green cubes) and proximity obsta-
cle (blue cube).

(c) Two sequences from the bimanual task experiment in columns.
Obstacle and target distances (top): green and gray lines – distance
of end effectors (robot hands) to target; dotted line – distance to
back of robot hand from proximity sensor; vertical lines/stripes –
tactile activations – contacts with corresponding body parts. Relative
position of the end effectors (bottom).

Fig. 7: Real robot – bimanual task.

D. Real robot – Interactive game demonstration

To demonstrate the operation of HARMONIOUS at scale
and in a genuine unstructured human-robot interaction sce-
nario, we taught the robot to play a children’s board game
called Bubbles1. Based on the numbers that appear on the
dice and their colors, the players—the robot and the human
in our case—compete to pick the card on the table where the
size of the colored bubbles corresponds to the colors of the
dice, ordered by the numbers – see Fig. 1 and video S5 in
Multimedia Materials. This game was chosen because there
is a shared physical space with unstructured interaction. The
robot processes the visual inputs and recognizes the individual
cards on the table. After the roll of the dice, the player who
first places his hand over the right card wins the round. After

1A description of the game is available at https://www.piatnik.com/en/
games/board-games/children-games/bubbles. For our purposes, we simplified
the game, with only six cards, three dice, only the human rollings the dice,
and without grasping the cards (only pointing at the selected one). The robot
recognizes the cards but is told the numbers on the dice after the roll (as these
are too small to be recognized).

choosing the appropriate card, the robot selects which hand to
use and initiates the reach movement. At all times and in real
time, visual, proximity, and tactile streams are simultaneously
processed, spawning obstacles if appropriate and dynamically
adding constraints to the robot controller in order to warrant
the safety of the human player at all times. The game itself
is rather challenging for the human player and hence in order
to compete with the robot, he often cheats by pushing the
robot physically away or by blocking certain volumes of the
workspace by placing his hands over it. This was a deliberate
choice to put HARMONIOUS at test.

The controller runs in dual-arm mode during the game.
Depending on the position of the card in every round, the
left or right arm is chosen and set as “primary’ (and hence
its position reaching target is set as a constraint). Additional
constraints were added to the optimization problem by adding
static obstacle points (see Sec. III-I) to prevent the robot from
colliding with the table. We prepared a high-level Python
script to play the game and used the gaze controller [60] to
always look at the table. The program loop starts with the
processing of rolled dice (numbers sent to the program in the
command line) and the current RGB-D image, followed by the
detection of cards on the table, the decision of the correct card
and computing its 3D position. Then one arm approaches the
card position, while the other arm goes to a specific position
outside the field of view of the RGB-D camera. After the reach
approach (successful or not), the approaching arm returns to
a specific position to clear the view for the next round.

The robot with HARMONIOUS running successfully man-
aged to run the game and cope with the unstructured inter-
action, dynamically processing a large number of obstacles
perceived through three different sensory modalities, without
endangering the human player.

V. CONCLUSION, DISCUSSION AND FUTURE WORK

We have developed a real-time reactive motion control sys-
tem for upper body control of a dual-arm robot with a common
torso. The proposed solution (HARMONIOUS ) is designed
to enable safe and effective interaction with humans in close
proximity. In the absence of obstacles, we systematically tested
our controller’s reach ability on a grid of position and orienta-
tion targets in the workspace and compared it to NEO [2] and
React [3], [4], demonstrating superior performance. We found
that assigning different weights to position and orientation
tasks is advantageous (unlike in [2]). Preferring arm over
torso movements by adjusting weights in the minimization
leads to more natural-looking movements. Uniquely to our
solution, we commanded both arms and the torso of the iCub
humanoid robot (in total 17 DoFs) and demonstrated both the
setup where every arm has a separate task and one, set as
“primary arm”, commands the torso joints, and a bimanual
task where the hands hold an object between them. Kinematic
singularities are handled through velocity damping and natural
kinematic postures are rewarded in the optimization problem
formulation. Smooth human-like motions with a bell-shaped
Cartesian velocity profile are generated using biologically
inspired local trajectory sampling. Overall, several components

https://www.piatnik.com/en/games/board-games/children-games/bubbles
https://www.piatnik.com/en/games/board-games/children-games/bubbles
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act synergistically to produce human-like naturally looking
movements.

The solution shows the online dynamic incorporation of
obstacles perceived through three different sensory modali-
ties and their on-the-run embedding as whole-body motion
constraints into a motion controller with human-like char-
acteristics. Two of these modalities, vision and proximity,
sense at a distance, “pre-collision”, and the other one—tactile
sensors on large areas of the robot body (2000 individual
sensors)—is providing contact or post-collision information.
The performance of HARMONIOUS at scale was finally
demonstrated in unstructured physical human-robot interaction
while playing a game.

The merit of HARMONIOUS lies in the ability to perceive
objects in the environment, relate them to the complete surface
of the robot body, and, when appropriate, transform them
into constraints for the motion controller. Information about
obstacles from all three modalities—sometimes overlapping,
at other times complementary—was processed and trans-
formed into a unified representation dynamically generating
constraints for the whole-body motion controller.

The number or type of sensors used in this work is by no
means a requirement for the described system to work. The
solution will work with less dense coverage of the perirobot
space, covered by only one sensor type, for example. However,
dense and multimodal coverage is advantageous for the safety
of the interaction. At the same time, additional sensor types
could be easily incorporated. Visual obstacles and the corre-
sponding constraints will work for any range-based sensor.
Physical contact is implemented here through tactile sensors
and acts as a constraint along the contact normal. If a contact
force vector was available, it could be incorporated preserving
the information about the direction of the constraint (as is
currently done for the visual obstacles). One limitation of our
current implementation is that the obstacles perceived by one
sensory modality are combined into a single motion constraint
per robot body part. This was an implementation decision
on the obstacle processing layer. Alternatively, multiple con-
straints from a single modality could be preserved, transformed
into constraints, and fed into the motion controller. Or, the
information about obstacles from mutliple modalities could be
first combined, preserving more information about the context
(see contact hypotheses fusion [49]) and only then transformed
into motion constraints.

HARMONIOUS is a versatile and extendable whole-body
motion controller which, however, remains at the kinematic
level. The problem could be approached using robot dynamics
and formulated at the level of forces and torques. This may
be advantageous (solving inverse dynamics rather than inverse
kinematics) and ultimately more general, but at the same time
it would require accurate identification of the robot inertial
parameters. In general, a “dynamics controller” constitutes an
alternative, different approach. With HARMONIOUS we have
shown the potential and versatility of the kinematic approach,
which in our view is simpler to deploy in any robot where a
kinematic model and position or velocity control are available.

The problem formulation is highly modular and both the
minimization criteria (e.g. motivating preferred postures) or

constraints to the quadratic program (e.g. obstacles) can be
easily removed or different ones added. For example, addi-
tional task constraints were added to the problem formulation
for the interactive game scenario. On the other hand, our
solution guarantees strict task prioritization only between
constraints (e.g., obstacle avoidance) and objective function
minimization (e.g., target reaching) and not between individual
tasks. To enforce strict task priority, a framework of prioritized
QP-based kinematic control with a null space projection can
be incorporated [61].

Our immediate future work involves adding active gaze
control such that the robot can better perceive what is relevant
and, at the same time, reduce the noise in the sensory streams
using gaze stabilization, for example.
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[11] F. Flacco, T. Kröger, A. De Luca, and O. Khatib, “A depth space ap-
proach to human-robot collision avoidance,” in 2012 IEEE International
Conference on Robotics and Automation, 2012, pp. 338–345.

[12] C. Escobedo, M. Strong, M. West, A. Aramburu, and A. Roncone, “Con-
tact Anticipation for Physical Human–Robot Interaction with Robotic
Manipulators using Onboard Proximity Sensors,” in 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Sep. 2021,
pp. 7255–7262.

[13] Y. Ding and U. Thomas, “Collision Avoidance with Proximity Servoing
for Redundant Serial Robot Manipulators,” in 2020 IEEE International
Conference on Robotics and Automation, May 2020, pp. 10 249–10 255.

[14] D. Guo and Y. Zhang, “A New Inequality-Based Obstacle-Avoidance
MVN Scheme and Its Application to Redundant Robot Manipulators,”
IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applica-
tions and Reviews), vol. 42, no. 6, pp. 1326–1340, Nov. 2012.

[15] Y. Tong, J. Liu, X. Zhang, and Z. Ju, “Four-Criterion-Optimization-
Based Coordination Motion Control of Dual-Arm Robots,” IEEE Trans-
actions on Cognitive and Developmental Systems, vol. 15, no. 2, pp.
794–807, 2023.



15

[16] W. Suleiman, “On inverse kinematics with inequality constraints: New
insights into minimum jerk trajectory generation,” Advanced Robotics,
vol. 30, no. 17-18, pp. 1164–1172, Sep. 2016.

[17] D. Rakita, H. Shi, B. Mutlu, and M. Gleicher, “Collisionik: A per-instant
pose optimization method for generating robot motions with environ-
ment collision avoidance,” in 2021 IEEE International Conference on
Robotics and Automation (ICRA), 2021, pp. 9995–10 001.

[18] O. Khatib, “Real-Time Obstacle Avoidance for Manipulators and Mobile
Robots,” Autonomous Robot Vehicles, pp. 396–404, 1986.

[19] K. Merckaert, B. Convens, C. ju Wu, A. Roncone, M. M. Nicotra,
and B. Vanderborght, “Real-time motion control of robotic manipulators
for safe human–robot coexistence,” Robotics and Computer-Integrated
Manufacturing, vol. 73, p. 102223, Feb. 2022.

[20] J. Schulman, J. Ho, A. Lee, I. Awwal, H. Bradlow, and P. Abbeel,
“Finding Locally Optimal, Collision-Free Trajectories with Sequential
Convex Optimization,” in Robotics: Science and Systems IX, 2013, pp.
1–10.

[21] S. Zimmermann, M. Busenhart, S. Huber, R. Poranne, and S. Coros,
“Differentiable Collision Avoidance Using Collision Primitives,” in 2022
IEEE/RSJ International Conference on Intelligent Robots and Systems,
Oct. 2022, pp. 8086–8093.

[22] R. Bordalba, T. Schoels, L. Ros, J. M. Porta, and M. Diehl, “Direct
collocation methods for trajectory optimization in constrained robotic
systems,” IEEE Transactions on Robotics, vol. 39, no. 1, pp. 183–202,
2023.

[23] D. E. Whitney, “Resolved Motion Rate Control of Manipulators and Hu-
man Prostheses,” IEEE Transactions on Man-Machine Systems, vol. 10,
no. 2, pp. 47–53, 1969.

[24] A. Albini, F. Grella, P. Maiolino, and G. Cannata, “Exploiting Dis-
tributed Tactile Sensors to Drive a Robot Arm through Obstacles,” IEEE
Robotics and Automation Letters, vol. 6, no. 3, pp. 4361–4368, Jul. 2021.

[25] A. Cirillo, F. Ficuciello, C. Natale, S. Pirozzi, and L. Villani, “A
conformable force/tactile skin for physical human-robot interaction,”
IEEE Robotics and Automation Letters, vol. 1, no. 1, pp. 41–48, Jan.
2016.

[26] E. Magrini and A. De Luca, “Hybrid force/velocity control for physical
human-robot collaboration tasks,” in 2016 IEEE International Confer-
ence on Intelligent Robots and Systems, Nov. 2016, pp. 857–863.

[27] N. Mansard, O. Stasse, P. Evrard, and A. Kheddar, “A versatile gen-
eralized inverted kinematics implementation for collaborative working
humanoid robots: The stack of tasks,” in International Conference on
Advanced Robotics (ICAR), June 2009, p. 119.

[28] C. Escobedo, N. Nechyporenko, S. Kadekodi, and A. Roncone, “A
Framework for the Systematic Evaluation of Obstacle Avoidance and
Object-Aware Controllers,” in 2022 IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2022, pp. 8117–8124.

[29] Y. Nakamura and H. Hanafusa, “Inverse Kinematic Solutions With
Singularity Robustness for Robot Manipulator Control,” Journal of
Dynamic Systems, Measurement, and Control, vol. 108, no. 3, pp. 163–
171, 09 1986.

[30] A. De Santis, A. Albu-Schaffer, C. Ott, B. Siciliano, and G. Hirzinger,
“The skeleton algorithm for self-collision avoidance of a humanoid
manipulator,” in 2007 IEEE/ASME international conference on advanced
intelligent mechatronics, 2007, pp. 1–6.
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P. Corke, and A. Cosgun, “Visibility Maximization Controller for
Robotic Manipulation,” IEEE Robotics and Automation Letters, vol. 7,
no. 3, pp. 8479–8486, Jul. 2022.
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and M. Hoffmann, “Effect of active and passive protective soft skins on
collision forces in human–robot collaboration,” Robotics and Computer-
Integrated Manufacturing, vol. 78, p. 102363, 2022.

[43] F. Flacco and A. De Luca, “Real-time computation of distance to
dynamic obstacles with multiple depth sensors,” IEEE Robotics and
Automation Letters, vol. 2, no. 1, pp. 56–63, 2016.

[44] S. Mühlbacher-Karrer, M. Brandstötter, D. Schett, and H. Zangl, “Con-
tactless Control of a Kinematically Redundant Serial Manipulator Using
Tomographic Sensors,” IEEE Robotics and Automation Letters, vol. 2,
no. 2, pp. 562–569, Apr. 2017.

[45] E. Dean-Leon, F. Bergner, K. Ramirez-Amaro, and G. Cheng, “From
multi-modal tactile signals to a compliant control,” in 2016 IEEE-RAS
16th International Conference on Humanoid Robots (Humanoids), 2016,
pp. 892–898.

[46] A. E. H. Martin, E. Dean-Leon, and G. Cheng, “Tacto-selector: En-
hanced hierarchical fusion of pbvs with reactive skin control for physical
human-robot interaction,” in 2020 IEEE International Conference on
Robotics and Automation (ICRA), 2020, pp. 9121–9127.

[47] S. Armleder, E. Dean-Leon, F. Bergner, and G. Cheng, “Interactive
force control based on multimodal robot skin for physical human-robot
collaboration,” Advanced Intelligent Systems, vol. 4, no. 2, p. 2100047,
2022. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.
1002/aisy.202100047

[48] S. Wieland, D. Gonzalez-Aguirre, N. Vahrenkamp, T. Asfour, and
R. Dillmann, “Combining force and visual feedback for physical inter-
action tasks in humanoid robots,” in 2009 9th IEEE-RAS International
Conference on Humanoid Robots, 2009, pp. 439–446.

[49] J. Felip, A. Morales, and T. Asfour, “Multi-sensor and prediction fusion
for contact detection and localization,” in 2014 IEEE-RAS International
Conference on Humanoid Robots, 2014, pp. 601–607.
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