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Abstract: Nominal payload ratings for articulated robots are typically derived
from worst-case configurations, resulting in uniform payload constraints across
the entire workspace. This conservative approach severely underutilizes the
robot’s inherent capabilities—our analysis demonstrates that manipulators can
safely handle payloads well above nominal capacity across broad regions of their
workspace while staying within joint angle, velocity, acceleration, and torque
limits. To address this gap between assumed and actual capability, we pro-
pose a novel trajectory generation approach using denoising diffusion models
that explicitly incorporates payload constraints into the planning process. Un-
like traditional sampling-based methods that rely on inefficient trial-and-error,
optimization-based methods that are prohibitively slow, or kinodynamic planners
that struggle with problem dimensionality, our approach generates dynamically
feasible joint-space trajectories in constant time that can be directly executed on
physical hardware without post-processing. Experimental validation on a 7 DoF
Franka Emika Panda robot demonstrates that up to 67.6% of the workspace re-
mains accessible even with payloads exceeding 3 times the nominal capacity. This
expanded operational envelope highlights the importance of a more nuanced con-
sideration of payload dynamics in motion planning algorithms.
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Figure 1: The diffusion model presented in this work learns to generate dynamically feasible trajectories di-
rectly in joint angle, velocity, and acceleration space, enabling super-nominal payload manipulation.

1 Introduction

Manipulator design establishes fundamental performance boundaries through the interplay of me-
chanical structure, actuation system, and control architecture. At the hardware level, these capabili-
ties manifest as explicit physical constraints: joint angle limits that define the reachable workspace,
maximum velocities bounded by motor specifications, and torque limits determined by the driv-
etrain capacity. However, a crucial distinction exists between these hardware limitations and the
operational capacities specified by manufacturers for general-purpose deployment. While hardware
limits are absolute physical constraints, nominal specifications—Ilike payload capacity and effec-
tive workspace boundaries—are derived conservatively by considering worst-case scenarios across
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possible configurations and trajectories. In practice, system integrators and end-users are locked
into treating these derived operational capacities as hard limits rather than contextual capabilities,
constrained by warranty requirements to design processes well within these conservative bounds.
This well-established approach of over-provisioning hardware to ensure ample safety buffers has
system-wide cascading effects—from the need to procure oversized actuators and power supplies,
to reinforcing mounting structures for added load tolerance, to expanding facility requirements to
accommodate larger equipment. For instance, when an application requires handling a 35kg pay-
load, end-users are forced to select a 50kg-rated robot over a 30kg-rated system, despite the latter
potentially being capable of safely executing the task within broad regions of its operational space.

Importantly, it is possible to overcome the issue of hardware over-provisioning through software-
based optimizations, which allow to expand the safe operational envelope of a fixed/given robot em-
bodiment and enable it to perform beyond nominal payload specifications. This requires unified han-
dling of both geometric (i.e., kinematic) and dynamic constraints, as payload characteristics interact
with joint configurations and higher-order derivatives to determine feasible motions. Even if they
have not solved this specific problem, prior approaches in this space have investigated the challenge
from multiple perspectives: geometric planners with dynamics post-processing [1, 2], kinodynamic
planning [3], optimization-based methods [4], and control-based frameworks [5]. However, these
methods face inherent trade-offs between design complexity, constraint handling, and computational
efficiency; these become particularly critical when operating near system limits where the feasible
solution space becomes highly constrained. These limitations highlight the need for a method that
balances constraint satisfaction with generalizability—i.e., the ability to adapt to varying payloads,
environmental conditions, and task requirements while maintaining consistent performance.

Of note, diffusion models [6, 7] present a compelling opportunity address the “curse of dimensional-
ity” inherent in trajectory planning with simultaneous kinematic and dynamic constraint satisfaction.
By learning from successful trajectories generated by multiple (imperfect) planning methods, these
models can extract various homotopic solution classes that overcome the limitations of individ-
ual approaches. This distills successful solutions from diverse planning approaches into a unified
representation that generalizes across the entire feasible space, including regions where individual
planners fail. The inherent stochasticity in the denoising process enables the exploration of diverse,
multimodal trajectories [6], while their capacity to model high-dimensional distributions allows in-
corporation of rich contextual information such as sensor data and problem constraints. However,
existing diffusion-based approaches have been confined to position-controlled systems [8, 9], leav-
ing the fundamental challenge of integrating both kinematic and dynamic constraints unaddressed.

In this work, we propose a method that directly tackles this problem by jointly learning valid distri-
butions of positions, velocities, and accelerations that satisfy both constraint types simultaneously—
moving beyond prior work that only denoises in position space. Through investigation of pay-
load encoding strategies, we demonstrate that diffusion models effectively learn the complex rela-
tionships between joint states and payload-dependent dynamics, enabling constant-time generation
(= 10ms) of feasible trajectories that preserve 67.6% workspace accessibility at 3X nominal payload
capacity—without explicit constraint checking at runtime. This demonstrates the importance of
dynamics-informed generative models in expanding the operational boundaries of robotic systems.

2 Related Work

Manufacturer-specified operational parameters for general deployment of robots are typically far
more conservative than hardware-level physical limits and often lack transparency in their deriva-
tion. This has led to significant under-utilization of robotic capabilities, as evidenced by geometric
motion planning and time parameterization approaches dominating most industrial use [2, 10, 1]
and recent advances in foundation models for manipulation in unstructured environments being re-
stricted to exclusively geometric reasoning tasks [11, 12, 13]. A nuanced, configuration-dependent
understanding of the robot’s specifications that considers both robot and environment dynamics
could enable a broader spectrum of manipulation capabilities within hardware limits.



Higher-order constraints such as joint torques and end-effector accelerations can be addressed
through several approaches that range from “plan-and-filter” methods which post-process geo-
metric paths [14, 15] to kinodynamic planners that directly incorporate dynamics during planning
[16, 17, 18]. While these approaches offer completeness guarantees, they face practical limitations in
high-dimensional manipulation spaces and often exhibit high variance in planning times especially
when faced with state or model uncertainty. These challenges are particularly acute when planning
near operational limits, where the feasible solution space becomes increasingly constrained [19].
Optimization-based methods naturally accommodate dynamics constraints but rely heavily on good
initialization, leading to hybrid approaches that bootstrap the optimization process with learning or
sampling-based solutions [20, 15, 21]. Optimal control formulations for dynamics-aware manipu-
lation also exist [5, 22]. Despite their theoretical rigor, they face practical limitations in handling
complex constraints and achieving reliable convergence for real-world manipulation problems.

Importantly, there exist a large body of works that demonstrate how a robot’s behavioral reper-
toire can be significantly expanded when incorporating dynamic constraints—e.g. nonprehensile
manipulation [23, 24, 25, 26, 27] or fast inertial transport [5, 4, 28, 29]. These capabilities and
considerations are particularly relevant for the specific problem of payload manipulation, where the
interaction between payload and induced joint torques significantly influence task success. Inter-
estingly, payload manipulation presents unique challenges that intersect robot design and control.
Traditionally, prior work has focused on mechanical modeling for specific low-DoF systems [30],
with emphasis on payload capacity optimization [31] and joint torque considerations [32]. Other
work in this domain tackles super-nominal payload handling through the use of multi-arm systems
[33, 34]. However, the field lacks generalizable approaches for high-DoF systems that can reason
about dynamic payload-robot interactions across diverse tasks.

Learning-based approaches offer promising directions for both generalizability and efficient trajec-
tory generation in high-dimensional constrained spaces while respecting system dynamics. Autore-
gressive models implicitly encode dynamics through dataset design [35, 36], while recent diffusion-
based approaches provide non-autoregressive alternatives with improved sampling diversity [8, 9].
Task-level diffusion policies, conditioned on language and visual embeddings [37, 6], demonstrate
potential for generating diverse behaviors from high-level task specifications. Our method condi-
tions a denoising diffusion model on the target payload to generate dynamically feasible trajectories.

3 Diffusion Models for Trajectory Generation

Diffusion models are a class of generative models that prdouce high-quality and diverse samples
across multiple data modalities [38]. These models operate through a two-phase process: first,
gradually corrupting training data with Gaussian noise in a forward process, then learning to reverse
this corruption through an iterative denoising process. In the context of robot motion planning, we
use diffusion to generate collision-free and dynamically feasible trajectories.

A joint space trajectory with ¢ waypoints at denoising step k is defined as wF =

Xk, XE ... XF T where X; = (q;,di,G;) € R represents the complete state (joint angles,
velocities, and accelerations) of an n-DoF robot arm at timestep 7. The training process for the
diffusion model approximates the conditional distribution p(7 | P), where P is the target payload
representation (Section 4.2). It does so by sampling 7r from dataset D, adding noise according to
a noise schedule parameterized by «, v, and o, and learning to predict the underlying sample. The
noise prediction network €y, where 6 represents the parameters of the 1D U-Net architecture, is
trained to minimize £(0) = MSE(e*, eg(P, 70 + €*,k)).

Given a trained ¢p, the K-step iterative denoising process 81 = a - (7% — yep(P, w* k) +
N(0,0%1)) starts from 7w ~ A(0, I) and generates a trajectory 7” that can support a target pay-
load and obeys start, goal, joint limit, and collision constraints. In practice, start and goal states are
enforced via inpainting [8], i.e., 75 = Xstqrt and wF_ 1 = Xgoqr Where Gstart = dgoal = Gstart =
Ggoal = 0. Collisions are avoided via inference-time gradient guidance wh~l =gk 3 .VJ(m E)
where (3 is a tunable guidance weight, .J defines the collision cost function, and E represents the set



of all obstacles in the environment [9]. Additionally, joint limits are enforced via clamping during
the training and inference processes. Specific to our work, p(7r | P) implicitly models dynamically
feasible payload-induced torques through an object property-based global conditioning mechanism
that influences the entire trajectory by appending target payload representation m to the diffusion
timestep embedding in the noise prediction network architecture [6].

4 Payload-Conditioned Trajectory Denoising

In this section, we present our payload-conditioned diffusion model to generate pick-and-place tra-
jectories that transport super-nominal payloads while obeying kinematic and dynamic constraints.

4.1 Training Data

Our payload-conditioned diffusion model (Section 4.2) is trained on 25,000 time-parameterized,
collision-free joint space trajectories (state dimension = DoFx 3, corresponding to joint angles, ve-
locities, and accelerations) for tabletop pick-and-place motions. These trajectories are generated
using a plan-and-filter pipeline that uses cuRobo, a GPU-accelerated trajectory optimization frame-
work [39], followed by a dynamics validation step (Figure 2).
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vectors representing joint angles, velocities, ac-
celerations, and torques respectively. The dy-
namics matrices include: M (q) (7 x 7 positive-
definite, symmetric joint inertia matrix), C(q, ¢) (7 x 7 Coriolis/centrifugal matrix), g(q) (7 x 1
gravity compensation torque vector), and f(¢) (7 x 1 joint friction torque vector). External task
space forces F.,; (6 x 1) map to joint torques through the Jacobian J(g) (7 x 7). The dynamics
model is parameterized as:

T=M(q)i+ C(q,9)q+ 9(q) + f(d) + T (q) Fear (1)

Note that this analytically-derived model represents the robot without external payloads which can
affect model accuracy when considering varying payload masses in real-world deployment. To ac-
count for payload-induced joint torques, we model the gravitational effects as a 6D Cartesian wrench
transformed from the world frame to the end-effector frame. This frame transformation is critical for
accurately projecting gravitational forces acting on the payload along the robot’s embodiment. We
represent the external gravitational wrench F, € R® in the world frame with a simplified point mass
model: F, =mg- [0, 0, —1, 0, 0, 0]7 where m € R* denotes payload mass and g ~ 9.81 m/s?
is gravitational acceleration. This representation assumes force application at the object’s center of
mass, neglecting potential moment contributions. The wrench’s structure combines linear forces
(first three components) and angular forces (last three components), which are mapped to induced
joint torques through the manipulator Jacobian, contributing to the total joint torque vector (eq. (1)).

Figure 2: Plan-and-filter process to create training data.



The training dataset D is constructed from these trajectories that satisfy both kinematic and dynamic
constraints. Each element d; € D is a tuple of trajectory 7r; and maximum supported payload m;;.
Each m; is the maximum supported payload mass for trajectory i subject to |7(m;, m;)| < Tinaz»
vt € [0, T] where 7, is computed via the dynamics equation (eq. (1)). Having established our dataset
D of dynamically feasible trajectories and their corresponding maximum payload limits, we now
consider different ways of incorporating payload conditioning into the diffusion model architecture.

4.2 Payload-Conditional Trajectory Generation

We extend the diffusion policy architecture to condition trajectory generation on payload mass
through global conditioning [6]. Unlike local conditioning where features influence each waypoint
individually, global conditioning applies the mass embedding uniformly across the entire trajectory
generation process, preserving dynamic feasibility across the generated motion (Figure 3). For each
training trajectory ¢ with corresponding maximum supported payload mass m; € D, we investigate
four approaches to incorporate a target payload mass p; into an encoding vector P;. The payload en-
coding P is concatenated with a diffusion timestep embedding to form a global conditioning vector,
which is then integrated into €y through either additive or affine transform conditioning [41].

D
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We consider the following approaches for design-
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categorical representation simplifies the learning
task by discretizing the payload space, it con-
strains inference to the discrete payload values
seen during training. During inference, continuous payload masses must be quantized to their ceil-
ing value [p] before input to the denoising network, ensuring a tight upper bound for conservative
operation. Less-Than Encoding. This encoding exploits the logical constraint that trajectories
supporting a given payload must also support all lighter payloads. For a random supported mass
p; ~ U(0,m;), we construct a 19-dimensional binary vector where entries are 1 for indices j < [p;]
and 0 otherwise. This representation directly encodes the downward compatibility constraint into the
input space, potentially improving the network’s ability to learn and respect payload-dependent con-
straints. During inference, continuous payload masses are similarly mapped to their ceiling value
[p] to construct the binary encoding. Supported-Range Encoding. This approach encodes the
complete range of supported payloads for a given trajectory. For training trajectory ¢ with maximum
supported mass m;, we construct a 19-dimensional binary vector where entries are 1 for indices
j < [m;] and 0 otherwise. During training, this encoding preserves the full payload compatibility
information from D. At inference time, for a target payload mass p, the encoding can be constructed
either as a one-hot vector with a single non-zero entry at index [p], or as a less-than encoding with
ones for indices j < [p]. This dual interpretation enables both trajectory generation for specific
payloads and exploration of the learned manifold of payload-trajectory relationships. Broadly, each
encoding method presents trade-offs between generalization capability and training simplicity.

Figure 3: Our model conditions a 1D UNet denoising
architecture [6] on various payload embeddings.

5 Evaluation

To validate our method, we focus on pick-and-place motions—a canonical industrial robotics re-
quirement where super-nominal payload manipulation can significantly extend the operational en-



velope of robot arms while obeying strict hardware limits.! In our experiments, payloads were

rigidly attached to the end-effector with a geometrically centered and uniform mass distribution.
This was a deliberate experimental choice necessitated by the limited grasping force of our parallel
gripper, ensuring repeatable execution across trials. Importantly, this choice is not a fundamental
limitation of our method: as shown in the supplementary video, our approach is capable of handling
non-rigidly attached objects and payloads with modest center-of-mass offsets, though some failure
modes at higher payloads are also highlighted and explained there. During execution, invalid trajec-
tories generated by the diffusion model are simply not executed. For valid trajectories that fail due
to unmodeled dynamics (e.g., payload oscillations), standard robot safety stops are triggered auto-
matically. Our approach relies on the manufacturer’s joint velocity controller for trajectory tracking,
which provides sufficiently accurate state tracking for the tasks evaluated in this work.

5.1 Comparison of Payload Encodings

Our evaluation of different payload encodings, conducted with FILM conditioning and payload
encoding normalization, reveals several key insights in terms of planning success rate (Figure 4).
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interpreted as a less-than encoding Figure 4: The aggregate success rate metric shows one-hot diffu-
during inference, the supported-range ~sion closely matching the underlying training data distribution.

encoding achieves competitive performance, but its one-hot interpretation leads to significantly
lower success rates. While the encoding is designed to capture richer payload-trajectory relation-
ships, the network struggles to fully utilize this information during generation. The inability of
numeric, supported one-hot, and supported less-than encodings to achieve 100% success rates in
the most loosely-constrained and data-rich portions of the state space, i.e., the nominal operating
regime (0 — 3 kg), suggest fundamental limitations in how these encoding schemes enable the dif-
fusion model to obey kinematic and dynamic constraints. For subsequent experiments, we use with
the one-hot encoding scheme, which demonstrates superior performance in terms of success rate.

20

Planning Success Rate [%]

5.2 Comparison across Planner Types

For the purposes of our discussion, we refer to DDIM (One-Hot) as a primary point of comparison.
Denoising Diffusion Implicit Models (DDIM) offer accelerated inference due to fewer denoising
steps (in our case, 5) [42]. We also present results for DDPM [38] with 25 denoising steps. Notably,
our experiments demonstrate that DDIM achieves identical success rates to DDPM despite requiring
significantly less planning time (= 0.01s), validating our approach for realtime use (Figure 5c).

We evaluate our approach against a diverse set of trajectory planning methods using mean planning
time to first solution and the corresponding success rate over 500 tabletop manipulation tasks as the
primary metric (Figure 5c). This metric provides a fair basis for comparison across fundamentally
different planning paradigms. Additional metrics include planning time factor (mean planning time
of baseline / mean planning time of DDIM) (Figure 5a), relative success rate change over DDIM as
a percentage (Figure 5b), and standard deviations of planning times (Figure 5d).

Plan-and-Filter Methods Broadly, plan-and-filter methods employ a sequential process: first
planning a geometric path via sampling-based motion planning, then time-parameterizing it to derive
joint velocities and accelerations, and finally validating trajectory feasibility for the target payload

'Please refer to the supplementary material for more details on compute hardware, problem domain, experi-
mental setup, and baseline methods. Videos are available here: https://payload-diffusion.github.io/
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Figure 5: Comparative analysis of trajectory planning methods for payloads of 3kg, 6kg, and 9kg. DDIM
(One-Hot) significantly outperforms a variety of baseline methods in both planning time to first solution and
success rate, generating dynamically feasible trajectories in constant time across all payload conditions.

using the robot dynamics model (eq. (1)). This iterative process continues until a feasible trajec-
tory is found that satisfies all joint torque constraints induced by the payload [14]. We evaluate two
CPU-accelerated geometric planning variants: VAMP (RRTConnect) with deterministic sampling
and VAMP (RRTConnect) with random sampling [43]. We select Ruckig for time parameterization
due to its ability to generate time-optimal trajectories in realtime [2]. Geometric motion planning
and time parameterization can alternatively be unified within a single optimization framework (in
our case, cuRobo) which can be followed by the dynamics validity checking.

Since there is a decoupling between kinematic reasoning and dynamic reasoning, further exacerbated
by the separate time parameterization step in the VAMP variants, these approaches demonstrate in-
ferior performance compared to our one-hot DDIM model (Fig. 5c). VAMP with deterministic
sampling achieves marginally higher success rates than VAMP with random sampling due to its
low-dispersion sampling strategy, which provides more uniform exploration of the configuration
space. Despite this sampling advantage, both variants exhibit higher standard deviations (Fig. 5d)
and lower overall success rates, particularly with heavier payloads (Fig. 5b). These methods also
exhibit significant planning time variability (Fig. 5a). The temporal predictability of our approach is
particularly valuable for industrial pipelines, where high standard deviations in planning times can
complicate integration with broader automation workflows. The success rate differential between
cuRobo and DDIM particularly demonstrates that our model effectively learns from successful tra-
jectories generated by imperfect planners. While cuRobo with validation often requires multiple
attempts to find feasible solutions, our method leverages these curated trajectories during training to
achieve higher success rates, especially under super-nominal payload conditions.

Kinodynamic Motion Planning Plan-and-filter methods generate paths requiring post-processing
to satisfy dynamic constraints, potentially invalidating the solution. By planning directly in the
state space that includes joint angles, velocities and accelerations, kinodynamic planning ensures
dynamically feasible solutions from the outset. Specifically, we employ steering-based kinodynamic
RRT as our baseline, planning in the joint angle, velocity, and acceleration space [44]. Ruckig
serves as our steering function owing to its ability to operate in realtime while respecting third-
order constraints [2]. Each edge undergoes validity checking that includes dynamics (eq. (1)) and



Figure 6: Two qualitative motions of the robot carrying super-nominal payloads of

and are shown. Colored dots indicate joint torques as a percentage of
joint limits: 0 — 20%, , , , 80 — 100%. Joints 1, 3, and 5 exhibit higher torques,
with joint 1 bearing the structural load of the arm and joints 3 and 5 positioning and orienting the payload.

smoothness checks before addition to the planning graph. Results not only indicate high planning
times to find the first solution (> 1000x compared to DDIM) due to “the curse of dimensionality”
(Figure 5a), but also show high standard deviations due to random sampling in the high-dimensional
state space (Figure 5d). The clustering of success rates observed across all three payloads suggests
an inherent planning bias in kinodynamic RRT, indicating insufficient exploration in this highly non-
Euclidean state space (Figure 5a). Furthermore, kinodynamic approaches require extensive tuning
of hyperparameters that interact with system dynamics in complex ways. Suboptimal parameter
selection frequently results in planning timeouts or physically implausible trajectories.

Trajectory Optimization with Torque Constraints This baseline implements Sequential Least
SQuares Programming (SLSQP) optimization for trajectory generation, minimizing sum-squared
jerk to ensure smoothness [4]. To facilitate direct comparison with our method, we constrain tra-
jectory durations instead of performing time optimization [39, 4], isolating evaluation to payload
manipulation capabilities. The formulation incorporates linearized representations of both dynamic
payload constraints and collision avoidance parameters. The success rate disparity between op-
timization and DDIM becomes particularly pronounced with higher payloads as the optimization
landscape becomes increasingly constrained. This significant performance gap warrants discussion
in the context of our evaluation choices. We implemented a basic SLSQP optimization formula-
tion to establish a baseline that directly handles dynamic constraints without sophisticated warm-
starting or acceleration techniques. Recent work has shown that optimization-based planners can
achieve substantially better performance both in planning time and success rate through strategies
like learning-based seeding [20, 45]. However, our baseline still highlights the computational chal-
lenge of finding feasible solutions in high-dimensional spaces with nonlinear dynamic constraints.

6 Conclusion

This work demonstrates that manipulators can safely operate well beyond their nominal payload
ratings through diffusion-based trajectory generation, challenging the traditional approach of hard-
ware over-provisioning in industrial automation. By training on trajectories that span the full range
of payload-dependent dynamic constraints and leveraging the successes of “imperfect” planners,
our model learns to generate motions for complex tasks in constant time that naturally respect sys-
tem limitations without explicit constraint checking at runtime. This enables safe operation even at
super-nominal payloads, maintaining 67.6% of the nominal workspace at 3 x rated capacity.’

Potential avenues for future work include studying how to determine the optimal composition of
training data from different planners operating in varied environments. Moreover, the notion of
conditioning on object-level characteristics can be generalized to handle objects with internal dy-
namics like liquids or articulated parts, moving beyond rigid-body assumptions. Such a framework
could significantly reduce robotic system integration complexity and design burden by eliminating
separate subsystems for different planning aspects, while maintaining the computational efficiency
advantages and higher-order constraint satisfaction demonstrated in this work.

2More details on accessible workspace regions in the supplementary material.



7 Limitations

While our results establish the viability of super-nominal payload manipulation on fixed/given hard-
ware, several aspects warrant further discussion. Rigid Attachment Choice. Even though the rigid
attachment experimental choice simplifies analysis by eliminating offset moments, it introduces two
critical limitations in real-world execution (see accompanying video): dynamic effects from payload
oscillation when objects are not perfectly rigid, and unmodeled torques when the object’s center of
mass is significantly offset from the end-effector’s origin. These assumptions can lead to trajectory
tracking errors or even task failures, particularly when handling flexible materials or asymmetric ob-
jects. Looking ahead, extending our approach to objects with internal dynamics will require explicit
robot-object dynamics models to capture effects such as rotational inertia, slippage, and uneven
mass distributions. Incorporating these nonlinearities, together with friction modeling for fingered
grippers and suction force modeling for suction-based end-effectors, remains an important direc-
tion. Moreover, expanding the conditioning space to whole-body contact forces, fingertip wrench
cones, and suction dynamics, as well as embedding more advanced controllers (e.g., impedance
or admittance), will allow the same “constraint-aware by design” principle to scale to interaction-
rich manipulation tasks. Test-Time Robustness. Assessing test-time robustness requires long-
term deployment studies and, in many cases, proprietary Original Equipment Manufacturer (OEM)
data on wear-and-tear. Whether robots should operate continuously at or near maximum capacity
is also a design question for robot OEMs. While our method generates trajectories that respect
manufacturer-specified torque limits, joints do run hotter under high payloads, motivating further
study of safety margins under sustained operation. Embodiment Generalization. We acknowledge
that embodiment understanding must be more directly incorporated into the training process to en-
able generalization across different robotic platforms. To this end, we are developing more general
embodiment-constrained conditioning mechanisms as part of ongoing work.

Our work also raises important theoretical questions about completeness and optimality guarantees
for learning-based motion planning. Even though we can argue that diffusion models trained on opti-
mal trajectories will generate similarly optimal solutions, establishing formal completeness guaran-
tees remains an open challenge. Moreover, while our method demonstrates advantages in inference
speed, traditional optimization-based approaches offer clearer constraint satisfaction guarantees and
greater flexibility in adapting to new constraints without retraining. That said, training is not a bot-
tleneck: we generate training trajectories across multiple payload conditions, with each trajectory
verified for kinematic and dynamic feasibility throughout the robot’s operational workspace. The
compact dimensionality of our denoised samples enables fast retraining of the UNet and efficient
creation of a high-quality dataset with comprehensive operational space coverage, but without the
need for real-world payload manipulation data (assuming the existence of a robot dynamics model,
which also lends to system modularity).

More rigorous evaluations comparing CPU versus GPU performance and Python versus C++ im-
plementations would enable direct baseline comparisons but standardizing these benchmarks re-
mains challenging. Our evaluation of baseline methods maintains industry-standard implementa-
tions of baselines without additional optimizations for deployment infrastructure. Several other
under-explored areas of research remain: optimal training data selection for maximizing planner
generalization, disambiguating data imbalance from model generalization to explain the high vari-
ance in torques for higher payloads, leveraging diffusion models’ continual learning capabilities at
industrial scale, and conditioning on real-world sensor modalities like point clouds for deployment.
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Supplementary Material

1 Other Design Considerations

Input Normalization. The trajectories in our training set are normalized to the range [—1,1] to
improve training stability. Given that payload masses in our dataset, m € D, are bounded within
well-defined minimum and maximum values, we apply an analogous normalization transformation
to map these payload values to [—1, 1]. This normalization ensures trajectory and payload features
exist in comparable numerical ranges, which empirically improves training stability and convergence
by preventing scale mismatches in the network’s learning dynamics.

Conditioning Mechanism. We consider two global conditioning mechanisms to incorporate pay-
load encoding and diffusion timestep information into €y [1]. The first approach uses additive con-
ditioning, where the global feature vector formed by a concatenation of the payload encoding and
diffusion timestep embedding is projected through a learned embedding layer and added to the
output of each convolutional block. The second approach implements an affine transform through
Feature-wise Linear Modulation (FILM) [2], where the global feature vector determines scale and
bias parameters that modulate outputs from the convolutional layers. This method provides more
expressive control over the generated trajectories due to its ability to selectively amplify or attenuate
features based on payload requirements, thereby giving higher planning success rates relative to the
additive approach.

2 Evaluation

2.1 Evaluation Hardware

All model training and evaluations are performed on a system with an Intel Xeon W5-2445 processor
(3.10 GHz), 64 GB of RAM, and a single NVIDIA GeForce RTX 4090 GPU.

2.2 Problem Domain and Experimental Setup

We evaluate our approach on tabletop pick-and-place tasks using dumbbells as payloads to enable
controlled experimentation. Our trained models and experiments assume that the payload’s center of
mass corresponds to its geometric center, and that the payload is rigidly attached to the robot’s end-
effector. The evaluation comprises 500 planning problems in a tabletop manipulation scenario using
the 7DoF Franka Emika Panda robot arm, which has a manufacturer-specified nominal payload
capacity of 3kg. Each test scenario consists of randomly sampled start and goal joint configurations,
with the end-effector positioned above a table at a fixed height (z = 0.2m) for each terminal state
and oriented downward to facilitate object grasping from the table surface. We initialize all start and
goal states with zero joint velocities and accelerations.

2.3 Super-Nominal Payload Manipulation as a Novel Capability

Torque Distribution. The ridgeline plots in Figure 3 demonstrate systematic changes in torque
distributions for the elbow (joint 3) and wrist (joint 5) with increasing payload mass. Both joints
exhibit distributions that shift progressively toward more positive torques, consistent with their role
in counteracting gravitational forces on the payload. The wrist joint displays notably broader distri-
butions compared to the elbow joint across all payload conditions, likely due to its position further
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Figure 3: Distribution of joint torques generated by one-hot diffusion at varying payload masses,
shown for the elbow (joint 3) and wrist (joint 5). The wrist joint exhibits broader torque distributions
compared to the elbow joint, reflecting its position in the kinematic chain.

along the kinematic chain where it experiences the compound effects of proximal joint motions and
must operate with smaller torque limits.

The diffusion model generates torque distributions that closely align with the training data distri-
bution across all joints, including joint 3 and 5, and this consistency holds across different payload
masses. This alignment suggests two key insights. First, the model has successfully learned to repli-
cate the statistical properties of valid trajectories, capturing the underlying dynamics constraints and
super-nominal operational behavior. Second, diffusion maintains stable performance under more
constrained conditions as payload mass increases, especially with limited availability of valid train-
ing trajectories that satisfy torque constraints for heavier payloads.

Reachable Workspace and Joint Failures. The heatmaps in Figure 4 and Figure 6 visualize the
robot’s accessible workspace in the x-y plane at a fixed height of z = 0.2m, with each pixel repre-
senting a 1.73 x 1.73cm bin (area = 2.98 cm?). The heatmap intensity indicates the success rate of
generating dynamically-feasible trajectories for end-effector poses starting or ending at each spatial
location. This fine-grained spatial resolution reveals how the robot’s operational boundaries pro-
gressively contract under increasing payload conditions, quantifying the relationship between load
capacity and accessible workspace. The reachable workspace area at nominal capacity (3kg) spans
1.578 m?, reducing to 1.455 m? at 2x nominal load (6kg)—a 92.2% retention. At 3x nominal ca-
pacity (9kg), the robot maintains a reachable area of 1.066 m? or 67.6% of its nominal workspace.
This demonstrates significant workspace preservation even under substantial payload increases.

The 3 x 3 joint failure maps (Figure 4), corresponding to subsections of the workspace reachability
map, indicate which joints operate near their torque limits in these sections of the workspace. Joints
0, 4, and 6 operate well within their torque limits. In contrast, joints 1, 2, 3, and 5 frequently
operate close to their torque limits, as their axes lie predominantly perpendicular to the gravity
vector, requiring them to generate substantial counteracting torques for payload support. Joint 3
displays a characteristic failure pattern, suggesting limited maneuverability in the negative-x region
of the task space. This pattern reveals an inherent asymmetry in the robot’s mechanical design across
the x-axis. Joint 5, despite its relatively limited torque capacity compared to the base-mounted
joint 1, bears significant responsibility for maintaining payload position and orientation throughout
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Figure 4: Analysis of diffusion success, workspace reachability, and joint constraints across a range
of payloads. Heatmaps: success rate distribution across the robot’s reachable workspace, where
color intensity indicates the probability of successful trajectory completion for trajectories starting
or ending at each location in the x-y plane (z = 0.2m). Each pixel in the heatmap represents a
1.73 x 1.73cm spatial bin, providing high-resolution insight into the robot’s operational boundaries
and joint-specific limitations. Top right: A jointwise 3 x 3 grid of spatial patches corresponding to the
9kg heatmap indicating which joints reach their torque limits in different regions of the workspace.

trajectories. This is particularly noteworthy given that joint 1 is primarily engineered to support the
weight of the subsequent kinematic chain links and payload.

2.4 Real-World Trajectory Execution

We validate our approach on a Franka Emika Panda robot arm using trajectories generated by our dif-
fusion model (At = 0.15s, equivalent to 6.67H z). The generated trajectories were executed through
the robot’s velocity control interface, with linear interpolation to match the required 1kHz control
frequency.! Notably, the diffusion-generated trajectories required no additional post-processing or
filtering beyond this basic interpolation. Our real-world testing encompassed payload masses rang-
ing from 0 to 7.2kg—Figure 5 presents the joint torque measurements recorded across 15 trajectory
executions at maximum payload for different start and goal joint configurations. While our simula-
tion work demonstrates successful planning capability for payloads up to 11kg with an approximate
success rate of 20% (Figure 4), we constrained our physical experiments to 7.2kg to maintain safe
operating conditions.

The measured joint torques exhibit distinct patterns reflecting the robot’s kinematic chain and load-
bearing constraints. Joints 1-3 demonstrate substantial torque variations during dynamic motion
phases, consistent with their primary role in payload manipulation. Joint 5 exhibits notably con-
sistent torque readings (approximately 8Nm) across trials, primarily managing gravitational loads
to maintain end-effector orientation. Joints 0 and 6, which mainly control vertical axis rotation,
show minimal torque requirements throughout the trajectories. A characteristic feature emerges at

!The accompanying video material demonstrates the robot manipulating super-nominal payload masses and
various real-world objects.
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Figure 5: Joint torques and tracking errors during trajectory execution with a 7.2kg payload on
the Franka Emika Panda robot. Grey shaded regions show mean =+ one standard deviation of joint
torques across 15 different trajectories, while red bars indicate the normalized tracking error for each
joint. Note the consistent ~ 8Nm loading on joint 5 and increased tracking errors in joints 1, 3, and
5 due to gravitational loading effects.
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Figure 6: These heatmaps visualize the robot’s reachable workspace resulting from diffusion trajec-
tories generated under different payload attachments for pick-and-place to/from z = 0.2m. Even at
3x nominal payload capacity, we see a 67.6% retention of accessible workspace.

the trajectory apex (2 — 3 seconds), where torque standard deviation significantly decreases across
all joints. This reduction corresponds to a mechanically advantageous configuration where the robot
momentarily pauses vertical motion, resulting in more consistent torque distributions across multiple
executions.

The normalized tracking error (shown in red in Figure 5) exhibits the highest magnitudes in joints 1,
3, and 5—those perpendicular to the payload’s z-axis. This increased tracking error can be attributed
to: 1) heightened sensitivity to mass and center-of-mass estimation errors due to significant gravita-
tional loading at these joints; 2) higher joint velocities leading to increased joint friction modeling
uncertainties [3]; and, 3) joint compliance effects, where high torques cause elastic deformation in
the transmission elements leading to position deviations beyond encoder measurements. Our phys-
ical hardware experiments demonstrate successful execution of diffusion-planned trajectories with
payloads beyond the derived operational threshold, though safety considerations ultimately bound
rigorous real-world testing.
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