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A B S T R A C T

In the evolving landscape of human-autonomy teaming (HAT), fostering effective collaboration and trust between human and autonomous agents is increasingly 
important. To explore this, we used the game Overcooked AI to create dynamic teaming scenarios featuring varying agent behaviors (clumsy, rigid, adaptive) and 
environmental complexities (low, medium, high). Our objectives were to assess the performance of adaptive AI agents designed with hierarchical reinforcement 
learning for better teamwork and measure eye tracking signals related to changes in trust and collaboration. The results indicate that the adaptive agent was more 
effective in managing teaming and creating an equitable task distribution across environments compared to the other agents. Working with the adaptive agent 
resulted in better coordination, reduced collisions, more balanced task contributions, and higher trust ratings. Reduced gaze allocation, across all agents, was 
associated with higher trust levels, while blink count, scanpath length, agent revisits and trust were predictive of the human’s contribution to the team. Notably, 
fixation revisits on the agent increased with environmental complexity and decreased with agent versatility, offering a unique metric for measuring teammate 
performance monitoring. This is one of the first studies to use gaze metrics such as revisits, gaze allocation, and scanpath length to predict not only trust, but also 
human contribution to teaming behavior in a real-time task with cooperative agents. These findings underscore the importance of designing autonomous teammates 
that not only excel in task performance but also enhance teamwork by being more predictable and reducing the cognitive load on human team members. Addi
tionally, this study highlights the potential of eye-tracking as an unobtrusive measure for evaluating and improving human-autonomy teams, suggesting eye gaze 
could be used by agents to dynamically adapt their behaviors.

1. Introduction

1.1. Challenges in human-autonomy teaming

In the rapidly developing research of human-autonomy relation
ships, there is a heightened emphasis on fostering cooperation over 
competition within this evolving dynamic (Chiou & Lee, 2023; de Visser 
et al., 2020; O’Neill et al., 2022). This shift underscores an increasing 
acknowledgment of the synergistic potential that can arise through 
human-autonomy collaboration (Metcalfe et al., 2021). For example, 
manufacturing envisions future industrial settings where humans and 
robots, or cobots, work side by side (e.g. Weiss et al., 2021). Simulta
neously, research in artificial intelligence aims to develop autonomous 
systems that augment human capabilities rather than replace them 
(Raisamo et al., 2019) and for good reason (Parasuraman et al., 2008; 
Parasuraman & Riley, 1997). Human-autonomy teams possess unique 
characteristics separate from human-human, human-automation, and 
human-animal teams (Lum & Phillips, 2024; McNeese et al., 2023; 
Phillips et al., 2018). Notably, humans may perceive their autonomous 

teammates differently and tend to express less trust in them (McNeese 
et al., 2021; Walliser et al., 2019). This is particularly true when agents 
vary in their reliability (e.g. de Visser et al., 2016; de Visser & Para
suraman, 2011; Lu & Sarter, 2019; Walliser et al., 2023). Recent trust 
models suggest that achieving an optimal human-autonomy relationship 
will require a continuous mutually adaptive partnership (de Visser et al., 
2018, 2023). The human relationship with autonomous agents is tran
sitioning from tool to teammate whereby each team member depends on 
the other to execute a task in support of an end goal (Groom & Nass, 
2007; Klein et al., 2004; Lyons et al., 2021; Phillips et al., 2011; Walliser 
et al., 2023).

Recent calls have articulated the need to prioritize the design and 
development of AI teammates that understand and contribute to team
work (Mangin et al., 2022; McNeese et al., 2023; Stowers et al., 2021). 
This means that while AI teammates are competent in executing task 
work, they must also be able to support teamwork such as goal align
ment, fluent coordination, and social factors such as trust (de Visser 
et al., 2018; Kaplan et al., 2023; Wildman et al., 2024). This requires AI 
teammates to be developed and designed with the ability to anticipate 
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the need of other teammates, be it that they are human or other AIs. To 
date, the focus has been to create AI that can reach the performance of 
top human players such as Go (Silver et al., 2016) and Starcraft (Vinyals 
et al., 2019). A different design objective is to collaborate closely 
together with humans to beat a game, requiring alternative approaches 
Challenges have emerged where groups of AI bots do not necessarily 
work well with their human counterparts in a multi-player real-time 
strategy game (Shah & Carroll, 2019). Human-Autonomy teams are 
therefore a unique challenge and should be seen as such (McNeese et al., 
2023). There is thus a great need to investigate such teamwork functions 
that form a crucial interface between humans and autonomous agents. A 
critical question therefore is: How do we improve human-autonomy 
teaming? We propose two novel methods for improving 
human-autonomy teaming.

1.2. Designing and developing adaptive AI agents

The first method to improve HAT is to create agents that are better 
able to adapt to their human counterparts. Early work on cockpit 
automation revealed the occurrence of “clumsy automation”, where 
systems inadvertently increased workload during periods of high task 
demand (Wiener, 1989). Likewise, achieving true interdependence in 
HATs has been challenging due to the limited capabilities, the unreli
ability, and the misallocation of roles of automated agents resulting in 
the human teammate having to adapt to the AI agent to facilitate true 
teamwork. While the production of joint action is the hallmark of HAT 
interdependence, the intricacies of how and when specific subtasks are 
performed can be ambiguous. A proposed solution is the creation of 
adaptive automation that can anticipate the needs of the human user to 
balance mental workload, increase situation awareness and calibrate 
trust (Byrne & Parasuraman, 1996; Feigh et al., 2012; Parasuraman 
et al., 2009; Parasuraman & Wickens, 2008; Scerbo, 2018). Develop
ment of new types of agile agents promises to make the HAT co-adaptive 
where the machine agent adapts to the human agent and vice versa.

Unlike competitive tasks where the autonomous agent learns the 
optimal strategy, collaborative tasks often require both agents to have 
compatible, collaborative and predictable strategies to succeed. If an 
agent chooses to play a complex, but near optimal strategy with a human 
teammate that is new to the task, the team is likely to perform worse 
than if the agent exhibited a simpler more understandable strategy. Vice 
versa, if an agent cannot recognize human team player initiatives, team 
performance will suffer because opportunities for collaboration and 
better strategies are missed. The faster the human can infer the legibility 
of the agent’s intended action, the quicker they can adapt to the agent’s 
desired outcome (Dragan et al., 2013). Such legibility increases trans
parency of automated agent actions and enhances human-agent 
collaboration without necessarily escalating the overall human work
load (Roncone et al., 2017; Stowers et al., 2021). As a result, traditional 
methods for training competitive agents such as self-play (SP) perform 
poorly with real humans in cooperative tasks since they are trained to 
perform the optimal but not necessarily the most human-compatible 
strategy.

Previous work has attempted to overcome this limitation by training 
an imitation learning agent to be a proxy human model, and then 
training a reinforcement learning (RL) model with the human proxy as 
the teammate (Carroll et al., 2019). This has provided some performance 
benefits, but this arrangement still drastically underperformed 
compared to human-human teams in most settings. More recent RL 
models using a hierarchical structure, such as the Hierarchical Ad Hoc 
Agent (HA2), outperforms these other models and, importantly, is 
perceived by participants to be a more cooperative and intelligent team 
player (Aroca-Ouellette et al., 2023). Hierarchical reinforcement 
learning (HRL) agents, like humans, break down a complex problem 
space into manageable subtasks. An agent that learns a hierarchy of 
subtasks and how each subtask contributes to the overall task goal en
ables a more adaptive agent. This type of agent more closely aligns to the 

human at the behavioral and cognitive levels (Aroca-Ouellette et al., 
2023). We hypothesize that more adaptive algorithms, like HA2, will 
result in improved human-autonomy teaming processes, such as effi
cient performance monitoring and shared task load.

1.3. Assessment of human-autonomy teaming factors with eye tracking

Leveraging opportunistic, implicit human signals, such as eye 
movements, is the second method to enhance human-autonomy team
ing. Autonomous agent models trained with human behavior often use 
keyboard and joystick inputs mapped to environment state changes 
(Carroll et al., 2019; Javdani et al., 2015). While useful, these inputs 
may be supplemented to provide a more detailed and holistic under
standing of the human-agent relationship. Eye movements provide 
cost-efficient, unobtrusive measurements for predicting state changes in 
the human and offer a near real-time data source for agent adaptation 
(Marathe et al., 2018; Metcalfe et al., 2021; Neubauer et al., 2020). 
Notably, recent work shows that models combining user input with eye 
gaze information outperform baseline models in predicting human vi
sual attention, proficiency, trust, and intent (Bera et al., 2021; Hulle 
et al., 2024; Thakur et al., 2023).

Human eye gaze produces multiple metrics for analyzing informa
tion selection and changes in cognitive state. Fixation revisits, which 
measure how often a person backtracks to an item, have revealed sig
nificant semantic and contextual differences in reading and search 
behavior (Byrne et al., 1999; Rayner, 1998). The proportion of eye gaze 
allocated to items can differentiate experts from novices and indicate 
periods of confusion (Law et al., 2004; Wachowiak et al., 2022). Addi
tionally, scanpath length is related to visual processing strategies, with 
larger scan paths reflecting more global/ambient processing or planning 
using information outside the local field of view (Groner et al., 1984; 
Velichkovsky et al., 2002). Blinking behavior, influenced by task de
mands and fatigue, indicates that lower blink rates may reflect a strategy 
to maximize visual processing time or increased task engagement (Ranti 
et al., 2020; Veltman & Gaillard, 1996) while increased blink duration 
has been associated with higher fatigue, more errors, and reduced visual 
intake (Holmqvist et al., 2011; Morris & Miller, 1996). Gaze-derived 
features such as gaze location, sequence, and duration, and pupil 
diameter have informed image classification for computer vision 
(Karessli et al., 2017, pp. 4525–4534). Metrics like fixation frequency, 
average fixation duration, and pupil diameter predict cognitive work
load fluctuations (Enders et al., 2021; Mallick et al., 2016; Pomplun & 
Sunkara, 2019; Van Orden et al., 2000, 2001; Wright et al., 2014).

Many eye movement features have proven highly informative in 
various teaming contexts. In a shared manipulation task, gaze patterns 
alone provided 83 % classification accuracy between periods of robot 
automation and human teleoperation (Aronson et al., 2018; see also 
Aronson & Admoni, 2022). Similarly, eye gaze predicted users’ intent in 
a sandwich-making task, with the most recently fixated item, fixation 
duration and frequency on items being the most predictive of subse
quent selections (Huang et al., 2015). Additionally, incorporating eye 
data into a computational antagonist model resulted in fewer human 
wins, suggesting the model could infer and adapt to human strategies 
(Wetzel et al., 2014).

Eye gaze data also effectively predict changes in trust within auto
mated systems (de Visser et al., 2023b; Kohn et al., 2021; Krausman 
et al., 2022; Tenhundfeld et al., 2019 ). For example, Lu & Sarter, 2019
demonstrated that low reliability automation had lower trust ratings, 
increased fixation frequency, larger scan paths, and led to longer total 
fixation time compared to high reliability automation. A meta-analysis 
revealed a negative correlation between performance-based trust in 
automation and dwell time percentage (Sato et al., 2023), supported by 
a recent analysis of 13 studies, attributing 18 % of the variance in 
automation monitoring via eye gaze to trust (Patton & Wickens, 2024). 
Comparable results were found in automated driving where increased 
trust in automation led to fewer fixations on the driving scene (Hergeth 
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et al., 2016). More recent evidence shows that failures in highly reliable 
automation decrease trust and lead to more complex scan patterns as 
indexed with gaze entropy (Foroughi et al., 2023).

1.4. Addressing the research gaps

While prior research supports using gaze-derived metrics to com
plement human inputs for informing human-autonomy teaming 
behavior, much of this work has focused on human-human interactions, 
low levels of agent automation, or competitive agent teammates. Fewer 
studies have examined how multiple eye movement metrics can predict 
both trust and teaming behavior in cooperative teaming scenarios where 
humans collaborate with highly autonomous agents in fast-paced, var
iable environments to complete multiple subtasks. It remains unclear if 
gaze metrics are informative of human-agent teaming behaviors in these 
contexts and which metrics are most useful. For instance, eye movement 
measurements such as revisits, a common metric used in visual search 
and reading literature, may relate to the teaming construct of mutual 
performance monitoring, where teammates track each other’s perfor
mance and errors (Salas et al., 2005). Additionally, tracking how gaze is 
allocated to different items in the environment could indicate team 
adaptability in situations where members must adjust their strategy 
based on the demands of their teammates or environmental context. Our 
study addresses this gap by combining an interactive teaming task with 
predictive modeling of gaze behavior, demonstrating how unobtrusive 
gaze signals can inform trust and teaming dynamics.

1.5. The current study

To evaluate our methods for improving human-agent teaming, we 
used the game Overcooked AI (Carroll et al., 2019) to measure behavior, 
trust, and various eye metrics in a cooperative task with varying agent 
models and environmental complexity. Our behavioral analyses focused 
on team scores, human-agent collisions, number of tasks completed and 
each member’s contribution to the task. Post-trial ratings provided 
subjective measures of trust, team fluency and coordination. Saccade, 
fixation, and gaze measures in relation to agent behavior, environment 
complexity, team performance, and trust outcomes were also assessed. 
Two hypotheses guided our work. We predicted that performance and 
eye-tracking-related measures would be influenced by agent versatility 
and the navigational complexity of the environment (H1). We also 
predicted that eye tracking metrics would predict trust and teaming 
behavior (H2, see Table 1). The results of this study show the unique 
influence of agent behavior and navigational challenges on 
human-agent dynamics emphasizing the potential for improved collab
oration. Specifically, our findings indicate that adaptive agents signifi
cantly enhance HAT performance and trust and eye gaze metrics 
effectively predict these outcomes.

We introduce and evaluate novel gaze-derived metrics such as fixa
tion revisits to the agent and scanpath length per second, which have not 
been previously applied to the context of adaptive HAT. These metrics 
revealed nuanced relationships between environmental complexity, 
agent behavior, and human contribution to the team. While increased 
fixations on an unreliable agent may be expected, our finding that re
visits decreased with agent versatility but increased with navigational 

Table 1 
Definitions, descriptions, and predicted outcomes of eye metrics used in the analyses.

Eye Metric Definition Interpretation and Prediction Related Constructs

Scanpath Length Total of all saccade amplitudes (degrees of visual 
angle) divided by total trial duration (seconds)

Indicates how far the eye moves each second on average. Larger 
scanpath lengths may reflect more global as opposed to local 
processing or increased planning behavior to information outside 
local field of view. Prediction: Scanpath length is expected to 
increase with higher navigational challenge and less adaptive 
agent behavior due to more planning and monitoring of the 
agent/environment, resulting in decreased human task 
contribution.

Information Processing; 
Teammate Performance 
Monitoring; Team Coordination

Fixation Duration Average duration (seconds) of a fixation Represents the average time available for perceptual intake. May 
reflect different types of information processing. Prediction: 
Increased navigational challenge and less adaptive agent behavior 
will require more planning and monitoring of the agent/ 
environment, resulting in shorter average fixation duration in 
these cases.

Information Processing; 
Teammate Performance 
Monitoring; Team Coordination

Fixation Count Total number of fixations Indicates spatial locations with increased information processing. 
Prediction: Increased navigational challenge and less adaptive 
agent behavior will require more planning and monitoring of the 
agent/environment, resulting in higher fixation counts.

Teammate Performance 
Monitoring; Team Coordination

Revisits Number of times an item is immediately 
refixated after fixating on a different item (e.g. 
fixate agent, fixate onion, fixate agent)

Indicates how often the human immediately backtracks to an 
item. Increased revisits suggest more monitoring of and/or 
adapting to the revisited item. Prediction: Revisits will be 
negatively related to human task contribution; the more often the 
human revisits their teammate, the less task contribution they will 
make.

Teammate Performance 
Monitoring; Adaptability

Gaze Proportion Number of eye samples having the same spatial 
location as an item/area, divided by the total 
number of samples, multiplied by 100

Proportion of eye gaze allocated to an item or area. Indicates the 
relative importance, meaning, or trustworthiness of an item or 
area. Prediction: In line with human-automation research, 
increased eye gaze on the agent teammate will show an inverse 
relationship with trust.

Teammate Performance 
Monitoring; Trust

Blink Count Total number of blinks General indicator of processing demands and task engagement. 
Lower blink rates may reflect a strategy to maximize visual 
processing time and/or increased task engagement. Prediction: 
Higher engagement and more visual processing time, (i.e. lower 
blink count), will result in higher human task contribution.

Task Engagement; Processing 
Demands

Blink Duration Average duration (seconds) of a blink Average time from eye blink onset to offset. Increased blink 
duration is associated with higher levels of fatigue, increased 
errors, and reduced visual intake. Prediction: Human task 
contribution and blink duration will be inverstly related.

Fatigue; Errors

Note. Metrics were individually calculated for each trial.
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complexity provides a more detailed behavioral signature of teammate 
monitoring. Furthermore, our predictive models demonstrate that sim
ple gaze features such as reduced agent fixations and shorter scanpaths 
can indicate higher trust, supporting their utility for adaptive AI 
development.

2. Material and methods

2.1. Participants

A total of 83 volunteers from the Location 1, and Location 2 partic
ipated in the experiment. Participants were recruited through newsletter 
announcements and through the Sona online experimental recruiting 
software. Three participants were discarded due to technical difficulties 
with the system and 12 were removed due to poor eye tracking data 
quality (see Data Processing – Saccades, Fixations and Blinks below and 
Supplement A.1). As a result, data from 68 participants were used in all 
analyses. This final sample included 31 participants from Location 1 
(Age: M = 24.1 years, SD = 8; Gender: 20 female, 9 male, 1-non-binary/ 
third gender, 1 preferred not to respond) and 37 participants from 
Location 2 (Age: M = 19.2 years, SD = 1.9; Gender: 20 male, 17 female). 
Before participating, volunteers signed an informed consent document 
approved by the institutional review board at Location 2 in accordance 
with the Declaration of Helsinki. Participants at Location 1 were reim
bursed with a $25 gift card while Location 2 participants received extra 
course credit. All participants had normal vision (20/40 or better) 
without contact lenses. Three participants wore eyeglasses.

2.2. Environment for studying Human/AI cooperation

Our experiment used Overcooked AI, an established paradigm for 
studying human/AI cooperation (Aroca-Ouellette et al., 2023; Carroll 
et al., 2019; Long et al., 2024; Strouse et al., 2021; Wachowiak et al., 
2022). The Overcooked AI platform provides a high-fidelity abstraction 
of real-world human-autonomy teaming scenarios by requiring humans 
and agents to perform interdependent tasks under time pressure, 
manage shared spatial constraints, and coordinate in real time. These 
characteristics parallel challenges in collaborative environments such as 
disaster response, medical robotics, and military operations. Its wide
spread adoption as a benchmarking environment (e.g., Carroll et al., 
2019; Strouse et al., 2021; Aroca-Ouellette et al., 2025; Liang et al., 
2024; Lou et al., 2023) reflects its value in the field for studying teaming 

behavior like coordination, adaptability, and trust in a repeatable and 
systematically controllable framework. While simplified compared to 
real-world systems, Overcooked AI allows precise control of components 
of the environment, such as individual agents and coordination 
complexity, making it an effective platform for isolating the impact of 
these factors on team performance.

This game requires a coordinated strategy between chefs (one human 
and one autonomous agent) to earn point rewards in a kitchen by per
forming a sequence of actions to cook and serve soup (see Fig. 1). 
Different environmental layouts were used to induce varying levels of 
team interdependence and navigational complexity, while the training 
policies of the autonomous teammate changed their interactive teaming 
behavior with the human. To play the game, participants took three 
onions, one at a time, from the onion dispenser, placed them in a pot (see 
Fig. 1), served the resulting soup on a dish and delivered it to the serving 
area as many times as possible within an 80-s time limit. Each soup 
served increased the game score by 20 points.

2.3. Experimental design

The study design was a 3x3 repeated measures with navigational 
challenge (low, medium, high) and agent behavior (clumsy, rigid, 
adaptive) as the within-subjects variables. The navigational challenge 
varied based on previously used Overcooked AI environments 
(Aroca-Ouellette et al., 2023; Carroll et al., 2019). The environments 
were constructed so that the task goal of cooking and delivering soup 
could be done independently, but the coordinated navigation strategy 
and potential for teammate collisions differed.

In the low navigational challenge environment, known originally as 
"Asymmetric Advantages", the design ensures that the human and agent 
do not occupy the same space, making collisions impossible. The me
dium navigational challenge environment, originally known as "Counter 
Circuit", allows for potential collisions, but using the middle counter 
space to pass ingredients can mitigate this risk. In the high navigational 
challenge condition, also known as "Coordination Ring", navigation is 
difficult due to the smaller workspace and the ring-like design, which 
limits navigation to clock- or counter-clockwise movement. Each envi
ronment constituted a grid of tiles, with each tile measuring 180 x 180 
pixels, subtending approximately 4 degrees of visual angle. The low 
navigational challenge environment was a 9x5 grid, the medium chal
lenge was 8x5 and the high challenge was 5x5.

The agent behavior variable was based on previous work using these 

Fig. 1. Overcooked environments. The human and agent must work collaboratively to place three onions in a pot, wait for it to cook, place the cooked soup on a dish, 
and serve the soup. Each soup served earns a point reward. Left: Medium navigational challenge. Top right: Low navigational challenge. Bottom right: High 
navigational challenge.
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agents (Aroca-Ouellette et al., 2023). The clumsy agent selects actions at 
random, resulting in unpredictable and generally unhelpful behavior 
(Cook et al., 1991; Lee & Seppelt, 2012; Woods, 1996). The rigid agent, 
trained using self-play reinforcement learning, performs adequately in 
the environment but cannot adapt well to novel situations, making its 
behavior inflexible (Silver et al., 2017, 2018). In contrast, the adaptive 
agent, known as HA2, was trained using hierarchical reinforcement 
learning and features human-inspired architecture with components for 
task selection and execution (Aroca-Ouellette et al., 2023). The adaptive 
agent was tuned for cooperative strategies, and designed for better 
adaptation to novel situations, new environments and different human 
teammates. HA2 represents the current state of the art in cooperative 
human-agent teaming within the Overcooked AI framework. Unlike 
traditional self-play or imitation learning agents, HA2’s explicit hierar
chical task structure mirrors human planning strategies, making agents 
more understandable, enabling more fluent coordination, and 
improving overall team performance.

2.4. Hardware and software Resources

The game was played on a standard desktop monitor (1920x1080 
pixels; 53 × 30 cm) using a Dell Precision 7760 laptop computer (11th 
Gen Intel i7 2.3 GHz processor, 32 GB RAM, Windows 10 Pro). Partic
ipants used the keyboard arrow keys to control the directional move
ments of their game player and the space bar to interact with the game 
environment.

Eye tracking data were acquired from the Tobii Pro Spectrum 
(firmware 2.6.0) at 300 Hz and included the x,y position (converted to 
computer pixel coordinates), sample validity, pupil diameter, and eye 
openness (distance from upper to lower eyelid) from each eye. The 
ambient lighting in each recording location consisted of overhead 
fluorescent lights with no windows.

Gameplay ran at 5 fps, with each frame timestamped, recorded, and 
synchronized with other data streams using Lab Streaming Layer (LSL) 
and Lab Recorder (Kothe et al., 2024). LSL is a framework for syn
chronizing time-series data from multiple sources and sampling rates, 
providing a language-agnostic, real-time communication protocol for 
data recording and sharing. Game state information from each frame 
contained the x,y location in computer pixel coordinates of all items (e. 
g. pots, onions, agent, and human), the status of the game environment 
(e.g. if an onion was in a pot, soup cooking), agent behavior, navigation 
complexity, trial number, timestamp, number of human/agent colli
sions, and game score. The score was only affected by the number of 

soups served, and a collision was logged when the human and agent 
attempted to occupy the same tile.

All computers, monitors, eye trackers, and software were of the same 
brand, specifications and versions between recording sites.

2.5. Procedure

After signing the informed consent, participants electronically 
completed a demographics form followed by a series of questionnaires, 
which are not analyzed in this work. A summary of prior gaming 
experience and Overcooked experience is shown in Supplement A.7. 
Participants were then seated approximately 70 cm in front of the 
computer monitor and eye tracker where a 5-point calibration was 
performed using the Tobii Eye Tracker Manager (2.6.0). Eye position 
was validated using the online gaze position, and recalibration was 
performed if, while looking at any calibration point, the gaze position 
exceeded 1.5◦. No participants failed the calibration procedure.

Next, data recording was initiated using the LSL Data Recorder to 
synchronize and store data streams from the eye tracker, mouse, 
keyboard, and game in one file (Fig. 2). Participants were presented with 
task instructions on the computer monitor, allowed to ask questions, and 
given practice with the game. Practice continued until the participant 
served one soup and felt comfortable performing the task. The envi
ronment in the practice session was different from those in the 
experiment.

After practice, participants donned noise-cancelling headphones to 
prevent background distractions. No distractions were documented. 
Each participant completed two trials of each agent (clumsy, rigid, 
adaptive) and environment (low, medium, high navigational challenge) 
combination, totaling 18 trials. Trials were randomized and lasted 80 s 
each. Trials were self-paced and started when the participant pressed the 
Enter key. After each trial, participants rated five statements, adapted 
from Hoffman, 2019, on a 7-point Likert scale (1 = strongly disagree, 7 
= strongly agree). Participants viewed the statements on the computer 
monitor and used the mouse to rate and submit their responses. The five 
statements consisted of 1) The human-agent team worked fluently 
together, 2) I was the most important team member, 3) I trusted the 
agent to do the right thing, 4) I understood what the agent was trying to 
accomplish, and 5) The agent was cooperative.

Fig. 2. Research environment. Frame-by-frame details of the game environment were synchronized with eye tracking and human behavioral inputs using Lab 
Streaming Layer and saved as an extensible data file (XDF).
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2.6. Data Processing

2.6.1. Saccades, fixations, and blinks
Before analysis, the proportion of missing data samples from the left 

pupil in each trial was calculated to assess eye data quality. To ensure 
high data quality while accommodating typical missing data from blinks 
or momentary tracking loss, we excluded participants if one or more 
trials had greater than 30 % missing data. As a result, 12 out of the 83 
participants were excluded from the study (Supplement A.1). For the 
remaining participants, averaged left and right x,y gaze positions were 
used to calculate saccades and fixations and averaged left and right pupil 
data were used for blink count and duration calculations. Prior to 
saccade, fixation and blink detection we linearly interpolated missing 
data segments consisting of up to 15 consecutive samples (50 ms).

Eye blinks were detected using the algorithm described in 
(Hershman et al., 2018), which calculates measurement noise that 
precedes and follows missing-sample time windows to determine blink 
onset and offset, i.e. blink duration. Saccades and fixations were 
detected using a velocity-based algorithm adapted from the EYE-EEG 
toolbox (Dimigen et al., 2011; Engbert & Mergenthaler, 2006). 
Thresholds were established using the median of the velocity 
time-series, smoothed over a 5-sample window. This method therefore 
calculates separate velocity thresholds for each participant. For all 
participants, we used a velocity factor of six (six times the median ve
locity), a minimum saccade duration of 12 ms and a minimum fixation 
duration of 50 ms.

To filter out biologically implausible saccades, a subsequent set of 
thresholds was applied.1 Specifically, we removed saccades >120 ms in 
duration and peak velocities less than 25 deg/sec or greater than 1000 
deg/sec (Enders et al., 2021; Long et al., 2024). Microsaccades less than 
or equal to 1 deg in amplitude were not considered in the analysis. 
Fixations shorter than 75 ms or outside the monitor coordinates were 
also removed. Consistent with Holmqvist et al., 2011 we removed eye 
blinks with durations less than 75 ms or greater than 900 ms. After 
filtering these outlier events, we derived the metrics shown in Table 1
for each trial.

2.6.2. Gaze mapping to environment
The proportion of gaze samples allocated to game items was calcu

lated for each trial. For every game frame, the location of each tile in 
screen coordinates, the tile label (e.g. onion, floor, counter) the current 
subtask being performed by the human and agent (e.g. getting onion 
from dispenser, serving soup), and the LSL timestamp was determined. 
Each eye gaze sample recorded during the game frame was initially 
labeled with the terrain type (e.g. counter, pot, serving station, 
dispenser) by co-registering the gaze sample position with the envi
ronment location label. If there was a game object (e.g. onion on 
counter) at the terrain type, the gaze label was overwritten with the 
game object type. If there was a player at the terrain type, the gaze 
sample was labeled as human or agent teammate. The soup object was 
created when an onion was placed in a pot or when the soup was on a 
dish before being served. The floor was any portion of the navigational 
path not containing a game object or player. If a gaze sample was 
recorded as not a number (NaN) (e.g. during a blink), or its position was 
outside the game-space monitor coordinates, it was labeled as ‘other’.

2.6.3. Interactive team behavior

2.6.3.1. Subtasks. Interactive teaming behavior was assessed using the 
number of subtasks completed by each team member and their contri
bution toward the task goal of serving soup (Bishop et al., 2020; Long 
et al., 2024). Subtasks completed (e.g. get onion from dispenser, grab 
onion from counter, grab dish from dispenser, serve soup) was defined as 
the total number of subtasks completed within a trial, calculated sepa
rately for both the human and the agent. Team member contribution 
was defined as the difference between the relative proportion of human 
subtasks supporting the task goal and the relative proportion of the 
agent subtasks supporting the task goal. Team member contribution 
values ranged from 1 (all human contribution) to − 1 (all agent contri
bution), with a contribution value of 0 indicating an equal contribution 
from both team members.

2.6.3.2. Revisits. We introduce revisits as a novel metric to evaluate 
human-agent teaming. Revisits are backtracking events within a scan
path sequence, typically described by the relationship between consec
utive saccades where the saccade between fixation n+1 and fixation n+2 
is in the opposite direction of the saccade between fixations n and n+1. 
We define revisits within a sequence of fixations where fixation n+2 
returns to the same item as fixation n, and fixation n+1 is on a different 
item from n (Findlay & Brown, 2006). In other words, our definition of 
revisit occurs when an item is immediately refixated after fixating on a 
different item, regardless of saccade direction. Our analysis focuses 
specifically on agent revisits (e.g., fixate agent, fixate onion, fixate 
agent).

3. Results

Behavioral and eye tracking analyses were performed in R (RStudio 
2023.12.1 + 402 "Ocean Storm" Release). All dependent measures, 
except number of subtasks completed, were analyzed using a random 
effects repeated measures analysis of variance (ANOVA) with the ‘ezA
NOVA’ R package. The within-subjects factors were navigational chal
lenge (low, medium, high) and agent teammate behavior (clumsy, rigid, 
adaptive) with participant as a random effect. The number of subtasks 
completed variable was analyzed using a mixed repeated measures 
ANOVA, with team member (human, agent) as the between-subject 
variable and navigational challenge (low, medium, high) and agent 
teammate behavior (clumsy, rigid, adaptive) as the within-subject fac
tors. Greenhouse Geisser epsilon is reported with degrees of freedom 
corrections, and partial eta squared is reported for effect size. All com
plete ANOVA outputs have been provided in supplementary materials 
and are referenced in each section for efficient reporting. Detailed fig
ures were produced to illustrate the relationship between the indepen
dent variables and the measures.2 The grey non-overlapping whiskers 
(95 % confidence interval) around the mean, marked by the green dia
mond, indicate significant differences between levels of each variable. T- 
tests were performed using the ‘emmeans’ and ‘pairs’ functions, while 
comparisons of teammate contribution against a zero value (equal 

1 Velocity-based classifiers may misclassify eye events. For instance, during 
an eye blink, the eye tracker will lose eye position. Upon recovery, it detects a 
significant change in the recorded eye position which is often mistakenly 
classified as a saccade since the duration and velocity exceed established 
thresholds. However, the recorded velocity is faster than the human eye can 
move and larger in magnitude for a saccade of that duration.

2 All box plots were created using the boxchart MATLAB (2021b) function. 
The horizontal line inside each box corresponds to the sample median while the 
top and bottom edges of the box are the upper and lower quartiles, respectively. 
Values that are more than 1.5 times the interquartile range (IQR) from the top 
or bottom are designated as outliers (points beyond whiskers). Each whisker 
above and below the box represents the maximum value that is not considered 
an outlier. The top and bottom edges of the notched region correspond to m+

(1.57⋅IQR)/√n and m− (1.57⋅IQR)/√n, respectively, where m is the median, 
IQR is the interquartile range, and n is the number of data points, excluding 
NaN values. The green diamond represents the sample mean with grey error 
bars showing 95 % confidence intervals. Significance between subgroups can be 
discerned by evaluating the 95 % confidence intervals.
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contribution) were conducted using the ‘contrast’ function, all in R, with 
Bonferroni adjustments.

3.1. Behavior

3.1.1. Collisions and score
Collision and score were analyzed separately, and each model 

showed significant main effects and interactions (p < .05, see Supple
ment A.2 for complete ANOVA output). As expected, there were more 
collisions in the high navigational challenge environment compared to 
the medium navigational environment (t(67) = 10.03, p < .01, Fig. 3). 
No collisions were observed in the low navigational challenge envi
ronment because the human and AI teammate were ‘physically’ sepa
rated and could not collide. Across challenges, the rigid agent collided 
the most with the human, followed by the clumsy agent (rigid-clumsy =
6.75, t(134) = 4.74, p < .001). The adaptive agent had the lowest 
number of collisions (adaptive-rigid = − 17.29, t(134) = − 12.15, p < 
.001; adaptive-clumsy = − 10.54, t(134) = − 7.41, p < .001). This result 
indicates that the adaptive agent’s behavior showed better coordination 
with the human compared to the other agents.

By far, the highest team scores were achieved in the low navigational 
challenge environment due to the convenient layout and the limited 
teamwork required to serve the soup efficiently. This allowed the human 
and AI teammate to complete tasks independently and quickly with 
occasional assistance from one another. This may also explain the lack of 
difference between rigid and adaptive agents in the low navigational 
challenge environment (t(399) = 2.97, p = .11), as the adaptive agent’s 
ability to understand task hierarchy and anticipate the teammate’s 
behavior was not advantageous when little teamwork was needed.

Despite the higher number of collisions, the high navigational chal
lenge environment showed the second highest team score, ahead of the 
medium navigational challenge environment. The lower travel distance 
in this level may have contributed to more soups served as well as the 
adaptive agent’s better navigation and coordination with the human in 
this environment.

Based on scores, the medium navigational challenge environment 
proved to be the most challenging. Success in this environment required 
both navigational and strategic coordination by passing onions on the 
middle counter to reduce travel time. Again, the adaptive agent signif
icantly outperformed the clumsy and rigid agents (adaptive-clumsy =
111.37, t(134) = 47.37, p < .001; adaptive-rigid = 26.72, t(134) =
11.36, p < .001) due to improved strategic and navigational 
coordination.

3.1.2. Interactive team behaviors
Subtasks completed by each member and team member contribution 

were separately analyzed. Each model showed significant main effects 
and interactions (p < .001, Supplement A.3). Overall, the human 
completed significantly more subtasks than the agent, regardless of the 
teammate behavior (human-agent = 18.6, t(134) = 46.4, p < .001) 
particularly in the low navigational challenge environment (low-me
dium = 32.9, t(134) = 28.9, p < .001; low-high = 49.1, t(134) = 43.1, p 
< .001) (Fig. 4). On average, the adaptive agent completed significantly 
more subtasks compared to the other agents across environments 
(adaptive-rigid = 17.29, t(134) = 26.0, p < .001; adaptive-clumsy =
42.6, t(134) = 64.2, p < .001) and the rigid agent performed more 
subtasks than the clumsy agent (rigid-clumsy = 25.3, t(134) = 38.1, p < 
.001). The significant agent/environment interaction showed the me
dium environment proved most challenging for both the rigid and 
adaptive agents, where they completed fewer subtasks compared to the 
low and high navigational challenge environments.

The human, on average, performed most of the work in each envi
ronment (low = 0.40, t(144) = 38.7, p < .001, medium = 0.23, t(144) =
22.4, p < .001, high = 0.03, t(144) = 3.01, p = .009). The human 
contributed more when working with the clumsy (0.55, t(144) = 53.6, p 
< .001) and rigid (0.14, t(144) = 13.4, p < .001) agents. The adaptive 
agent reversed this dynamic with it contributing to teamwork overall 
more than the human (− 0.03, t(144) = − 2.8, p = .02). The significant 
interaction between navigational challenge and agent teammate 
behavior suggests that for the clumsy agent, the human was doing most 
of the work in the low navigational environment, followed by the me
dium and high environments. However, with the adaptive agent this 
pattern adjusted: the human still did most of the work in the low navi
gational challenge environment (0.17, t(396) = 11.6, p < .001) but 
shared the task load in the medium environment (− 0.03, t(396) = − 2.3, 
not significant, p = .2) while the agent contributed more when in the 
high navigational environment (− 0.22, t(396) = − 15.5, p < .001). 
These results demonstrate that the adaptive agent more effectively 
manages teaming and creates a more balanced task distribution across 
environments compared to the other autonomous agents.

3.2. Self-report measures

Each self-report statement was separately analyzed and showed 
significant main effects and interactions (p < .001, Supplement A.4). 
Overall, participants perceived the adaptive agent as the most cooper
ative (adaptive-clumsy = 4, t(134) = 37.33, p < .001; adaptive-rigid =
0.65, t(134) = 6, p < .001; rigid-clumsy = 3.4 t(134) = 31.33, p < .001) 
and trustworthy (adaptive-clumsy = 3.97, t(134) = 37.62, p < .001; 
adaptive-rigid = 0.56, t(134) = 5.32, p < .001; rigid-clumsy = 3.4 t 
(134) = 32.3, p < .001) (Fig. 5). This pattern was most pronounced in 
the medium navigational challenge environments. Participants viewed 

Fig. 3. Collisions (left) and score (right) for each agent, environment interaction. Note. Collisions were precluded in the low navigational challenge environment.
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themselves as the most important team member when working with the 
clumsy agent whereas this subjective perception was lowest when 
working with the adaptive agent, indicating a stronger teaming dynamic 
with the adaptive agent.

The highest fluency between the team was perceived with the 
adaptive agent followed by the rigid and clumsy agents. Fluency dif
ferences between agents, specifically the adaptive and rigid agents, were 
most significant in the medium navigation challenge environments (t 
(397) = 6.44, p < .001). Fluency differences between the rigid and 
adaptive agents disappeared in the high navigational environment (t 
(397) = 0.97, p = 1). This same pattern of results was displayed when 
participants rated their understanding of the agent’s goal. When team
ing with humans in environments of low navigational complexity, the 
rigid and adaptive agents were rated as more fluent, trusted, under
standable, and cooperative compared to the other environments.

3.3. Eye metrics

3.3.1. Fixations and saccades
Fixation count, fixation duration, scanpath length, and agent revisits 

were separately analyzed with each showing significant main effects and 
interactions (p ≤ 0.001, Supplement A.5). Eye movement summaries for 
saccades and fixations, collapsed across participants and agent behavior, 
are shown in Fig. 6. Fig. 6A shows the spatial distribution of fixation 
concentration (i.e. heatmaps) in each environment, which should be 
interpreted with caution as they do not depict human/agent locations. 
Fig. 6B shows the distribution of fixation durations indicating generally 
longer fixations in the low navigational complexity environment relative 
to medium and high. The saccade main sequence in Fig. 6C exemplifies 
the expected relationship between saccade amplitude and velocity 
(Bahill et al., 1975). The distribution of saccade angles in Fig. 6D shows 
differences in saccade direction between environments.

Overall, game play with the clumsy agent resulted in significantly 
more (clumsy-adaptive = 3.3, t(134) = 2.67, p = .03; clumsy-rigid =
4.82, t(134) = 3.87, p < .001, rigid-adaptive = not significant p = .7) 

Fig. 4. Total subtasks completed (left) and contribution of each team member (right) for each agent, environment interaction. Right: The horizontal dashed line 
indicates equitable human, agent contribution.

Fig. 5. Subjective ratings for each agent, environment interaction.
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and shorter (clumsy-adaptive = − 0.02, t(134) = − 4.77, p < .001; 
clumsy-rigid = − 0.01, t(134) = − 4.52, p < .001, rigid-adaptive = not 
significant, p = 1) fixations and larger scanpaths (clumsy-adaptive =
0.53, t(134) = 5.57, p < .001; clumsy-rigid = 0.66, t(134) = 6.86, p < 
.001, rigid-adaptive = not significant, p = .6) (Fig. 7). The significant 
agent by environment interaction for fixation count and duration and 
scanpath length was driven primarily by environment for the rigid and 
adaptive agents. For these agents in the low nagivational complexity 

environment, eye fixations were fewer and longer, with smaller scan
path length relative to medium and high environments, suggesting less 
of a need to coordinate with the agent and more time for the human to 
focus on their own behavior. In the medium and high environments, eye 
fixations were more frequent and shorter with larger scanpath length. 
This suggests that higher navigational challenge environments signifi
cantly increase information processing demands, impacting how team
mates monitor performance and coordinate tasks. The clumsy agent may 

Fig. 6. Saccade and fixation summary across all participants for each navigational challenge. A. Heat maps indicate where most fixations were concentrated. B. 
Distributions of fixation duration. C. Main sequences showing the relationship between saccade amplitude and velocity. D. Saccade angular histograms. Outer ring 
numbers indicate saccade angle while the inner ring numbers represent saccade count.
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have attracted more fixations relative to the other agents in the low 
complexity environment because of its unpredictable behavior.

Teammate performance monitoring as measured with revisits on the 
agent, indicated the adaptive agent was monitored the least followed by 
the rigid and clumsy agents (adaptive-rigid = − 1.19, t(134) = − 4.24, p 
< .001; adaptive-clumsy = − 2.75, t(134) = − 9.82, p < .001; rigid- 
clumsy = − 1.56, t(134) = − 5.58, p < .001). The reduced revisits to the 
adaptive agent, when compared to the clumsy and rigid agents, suggests 
less of a need to monitor and adjust to its actions leading to more effi
cient collaboration and team performance.

Higher navigational complexity resulted in more agent monitoring. 
Most revisits were found in the high complexity environment followed 
by medium and low, with all complexities significantly different from 
each other (high-low = 5.3, t(134) = 16.11, p < .001; medium-low =
3.77, t(134) = 11.48, p < .001; high-medium = 1.52, t(134) = 4.63, p < 
.001). This finding reflects a greater need to monitor and coordinate 
with the agent teammate as navigation becomes more challenging.

The significant interaction suggests that the increase in revisits as a 
function of navigational complexity varies depending on the agent. 
Differences in revisits between navigational complexities were largest 
for the clumsy agent and smallest for the adaptive agent. This suggests 
that less monitoring of the adaptive agent is required in environments 
with high navigational challenge when compared to the rigid and 

clumsy agents indicating better performance and predictability in 
complex environments.

3.3.2. Gaze allocation in environment
Differences in processing between items in the environment were 

analyzed by quantifying the proportion of eye gaze allocated to them. 
The proportion of gaze allocation to an element (i.e. agent, floor, soup, 
counter, onion and human) was separately analyzed due to their 
importance in task coordination and strategy. Each model revealed 
significant main effects and interactions (p ≤ 0.004, Supplement A.6). 
Fig. 8 provides a breakdown of gaze allocation across items.

Overall, the highest proportion of gaze was allocated to the human 
player. As navigational complexity increased, gaze on the human player 
decreased with increased gaze allocated to the teammate and the floor. 
This shift in gaze behavior was necessary due to the increasing need to 
coordinate movements with the teammate and plan the human player’s 
own movements, reflected in increased gaze to the floor.

In the low navigational challenge environment, where the human 
player worked mostly independently, more gaze was allocated to the 
human player compared to the other environments. Additionally, more 
gaze was devoted to the soup in this environment, to monitor its 
completion, and to the floor, for navigation planning. Predictably, very 
little gaze was directed to the teammate in this environment due to the 

Fig. 7. Fixation count, fixation duration, scanpath length, and agent revisits for each agent, environment interaction.
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minimal need for team coordination.
In the medium environment, an interesting set of teaming behaviors 

emerged with a change in focus on different elements. As the agent 
became more capable, from clumsy to adaptive, more gaze was devoted 
to the onion and the counter and less to the floor. This reflects a strategy 
shift where passing the onions across the counter improves navigation 
efficiency but requires more sophisticated teaming coordination, which 
the adaptive agent exhibits best. There was a reduction of gaze on the 
teammate with the adaptive agent, presumably due to the more efficient 
and predictable strategy of focusing on the onions and the counter.

Within the high navigational environment, there was a clear reduc
tion in gaze allocated to the teammate with the most gaze on clumsy 
agent, followed by the rigid agent, and the least on adaptive agent. This 
shift in attention reflects the competence of the agent and the reduced 
need to monitor and repeatedly adapt to its behavior. Additional gaze 
was then directed to the floor and the human for better navigational 
planning, movement, and soup delivery.

3.4. Models of relationships between measures

We tested two linear mixed effects models in R (using the ‘lmer’ and 
‘lme4’ packages) to evaluate the role of eye tracking metrics in pre
dicting agent trust and teaming behavior. Reported t-tests use Sat
terthwaites’s method. In the trust model we aimed to determine whether 
the proportion of eye gaze on the agent teammate could predict agent 
trust, from post-trial trust ratings, beyond the effects of the navigational 
complexity and agent behavior. In the team contribution model, we 
examined if the contribution of the human teammate could be predicted 
by eye metrics associated with teaming and cognitive state beyond 
navigational challenge and agent behavior. Specifically, our predictors 
in the team contribution model included double-checking behavior (i.e. 
revisits), scanpath behavior (scanpath length per second), task engage
ment (blink count and duration), trust (subjective rating), and human 
gaze allocation (proportion of gaze on human player). Each model 
included a random effect for participant (see Table 1 for predictor var
iable definitions).   

In the trust model, no outliers surpassing a Cooks Distance of 0.02 
were identified. The strongest fixed effects correlation observed was 
− 0.78 between the high navigational challenge environment and pro
portion of gaze on the agent. In the team contribution model, no outliers 
surpassing a Cooks Distance of 0.04 were found. The strongest fixed 
effects correlation observed was 0.79 between the clumsy agent and 
trust. In both models, visual inspection of scatterplots of residuals 
against fitted values showed no systematic deviations from zero, indi
cating homoscedasticity. Additionally, the histogram of residuals 
showed an approximately normal distribution for both models.

Analysis of the trust model (Table 2) revealed significant effects of 
each predictor, indicating that the proportion of eye gaze allocated to 
the agent was a significant predictor of trust over and above naviga
tional challenge and teammate behavior. The inverse relationship shows 
that as gaze on the agent decreased, trust in the agent increased.

Analysis of the team contribution model indicated that certain eye 

metrics were more predictive than others (Table 3). Significant pre
dictors included fixation revisits on the agent, scanpath length, blink 
count and trust. Each of these predictors decreased as the human 
contributed more to task completion. Fewer revisits on the agent sug
gests the human spent less time checking the agent and more time on 
completing subtasks, which was mirrored by decreased trust. The more 
the human contributed to the teaming behavior the less they trusted the 
agent. Increased human contribution to the team was also related to a 
decrease in scanpath length, suggesting a shift from global to local 
processing. This shift indicates increased processing within the imme
diate field of view rather than orienting to information outside of it. Eye 
blinks were significantly reduced with increased human team contri
bution implying greater potential for perceptual intake and increased 
task engagement during these periods. Eye blink duration and the pro
portion of eye gaze on the human player were not significant predictors 
in the model.

4. Discussion

4.1. Summary

The goal of this study was to investigate how autonomous agents, 
trained with different strategies, work with humans in increasingly 
complex environments and how these interactions affect teaming, trust, 
and eye-gaze measures. While prior studies have examined trust and 
team performance in automation and human-agent interaction, our 
study is among the first to use eye-tracking metrics such as revisits, gaze 
allocation, and scanpath length to predict not just trust but human 
contribution to teaming behavior in a cooperative, real-time task with 
adaptive agents. We found that agent revisits increased with environ
mental complexity but decreased with agent adaptability, an interaction 
that offers a completely novel behavioral signature of teammate per
formance monitoring. Additionally, the inverse relationship between 
gaze on the agent and trust, while aligned with some prior literature 
(Patton & Wickens, 2024), had not been demonstrated in this specific 
task structure or used in a predictive model of human-agent contribu
tion. Furthermore, studies with true autonomy and true 
human-autonomy teaming remain rare (O’Neill et al., 2022) with many 
studies simulating the autonomy (Riek, 2012) or instead using the 
classic automation dyadic paradigm that is not interdependent. This 
study uses a real AI teaming model to improve AI agents and 
human-autonomy teaming that exhibit both agency and interdepen
dence. Lastly, a criticism of automation and human-autonomy teaming 
work is that researchers focus a lot on taskwork, not teamwork 
(McNeese et al., 2023). Our work is novel and contributes in that it does 
focus on teamwork both from the AI modeling side as well as from the 
setup between an AI and a human. These results therefore show unique 
insight into what true human-AI collaborative work looks like, how it 
can be assessed and further improved and that is a major contribution. 
We believe these findings extend the current literature by identifying 
practical, unobtrusive indicators that could be used to inform adaptive 
AI behavior in future HAT systems.

4.2. Human-autonomy teaming with adaptive AI agents

The adaptive AI teammate performed better and was perceived as 
more trustworthy, collaborative, and fluent than the other agents, 
replicating previous results with this platform and other environments 
(Aroca-Ouellette et al., 2023). Using hierarchical reinforcement 
learning, this agent better matched the task execution in the Overcooked 
AI environment, aligning with the game’s task hierarchy and resulting in 
improved performance and predictability. Human-autonomy teaming 
improved primarily through the enhanced capabilities of the autono
mous agent, with evidence showing that human performance increased 
as the agent’s performance improved. When the agent is adaptive and 
anticipates human behavior, it not only improved its performance 
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output but also improves teaming behavior. However, the largest vari
ability was observed in the medium navigational environment indi
cating that not all humans could anticipate the agent’s behavior. Some 
participants may therefore benefit from team building with an AI, a 
strategy that has proved effective in enhancing performance and 
collaboration (Walliser et al., 2019). Future research should focus on 
further enhancing teamwork between humans and autonomous agents 
by refining team processes and structures as well as optimizing the 
workspace in which they interact (Tung et al., 2024; Walliser et al., 
2019).

Modelling agents based on meaningful tasks enhances teamwork by 
providing a clearer understanding of their behavior. This may funda
mentally change how we approach HATs by shifting the focus from 
communication and transparency to a more personalized understanding 
of context and task structure (Begerowski et al., 2023; Mangin et al., 
2022). Rather than designing agents for performance optimization or 
human-specific needs like mental model sharing, more focus should be 
on creating agents that excel in teamwork (McNeese et al., 2023). 
Designing for teamwork is more transferrable and foundational than 
many performance metrics.

To further improve the agent, other measures and methods may be 
needed to improve teamwork. For example, while Overcooked-AI serves 
as a good abstraction, the original Overcooked game provides more 
challenges and a higher level of complexity (Bishop et al., 2020). In 
human team play of this game, improved performance requires discus
sion of coordinated strategies, task allocation and motivation. Aside 
from communication, additional inputs may be needed to help the agent 
anticipate the human teammate’s behavior. This becomes even more 

important when the team scales to multiple agents and humans (Hertz 
et al., 2019; Walliser et al., 2023).

Understanding and transparency of the teammate are important for 
effective collaboration (Endsley, 2023; Walliser et al., 2023). In this 
study, the adaptive agent excelled in this area by having traceable goals 
and tasks, allowing it to share its intent more effectively. Some have 
already demonstrated this in the context of Overcooked AI and robot 
collaboration showing that increased transparency through communi
cating intent and task planning, leads to better collaboration with the 
agent and decreases cognitive load (Berberian et al., 2023; Le Guillou 
et al., 2023; Roncone et al., 2017). Foundational models, like large 
language models (LLMs) could prove useful in this context. Combining 
transparency or trust cues (de Visser et al., 2014) with an agent trained 
using a task hierarchy can further facilitate helpful human-autonomy 
teaming.

4.3. Eye metrics as indicators of human-autonomy teamwork

Eye-gaze metrics have proven valuable for assessing team task 
engagement and detecting levels of trust within human-autonomy 
teaming. Previous research has identified a negative correlation be
tween the degree of monitoring in automation and trust, where 
increased monitoring often signifies distrust (Patton & Wickens, 2024). 
This study reinforces those findings, demonstrating the proportion of 
gaze on the agent teammate was a significant predictor of trust. Eye 
tracking captures the additional monitoring required to oversee unreli
able teammates, with studies noting increased gaze allocation to erro
neous actions performed by automated teammates (Wachowiak et al., 

Fig. 8. Proportion of gaze samples allocated to items in the environment as a function of agent behavior and navigational challenge. Note. Percentages are rounded. 
‘Other’ refers to gaze samples labeled as not a number (NaN), outside the game environment, dish dispenser, serving area, dish, and onion dispenser.
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2022). Our findings revealed that participants frequently looked at their 
own avatars, consistent with previous research indicating this behavior 
is common during normal workflow (Wachowiak et al., 2022).

Interpreting gaze allocation metrics, however, requires caution. The 
proportion of gaze allocated to an item is often equated with the 
‘amount’ of attention given to that item. While overt gaze shifts orient 
attention to visual stimuli, information may still be selected and prior
itized using covert attention shifts, i.e. shifting attention with little to no 
eye movement (Bisley, 2011; Handy & Khoe, 2005; Henderson et al., 
1989; Posner, 2016). In our experiment, participants might have tracked 
the agent using covert attention even though their gaze position was on 
a different item, or alternatively, processing environmental elements 
when gaze was on the agent. Thus, the proportion of gaze allocated to 
specific items should be interpreted in this broader context.

The structured nature of our experimental environments allowed us 
to infer team strategies based on agent revisits, underscoring the utility 
of this metric in understanding team dynamics. Specifically, our data 
revealed that revisits on the autonomous teammate increased with 
navigational complexity but decreased with agent versatility. This 
pattern suggests that in more complex environments, participants felt a 
greater need to monitor their teammates closely, reflecting higher load 
and coordination demands. Conversely, the decrease in revisits with 
more versatile (adaptive) agents indicates that these agents were more 
predictable and reliable, reducing the need for constant monitoring. It is 
important to note that fixation revisits are distinctly different from gaze 
allocation. In this context, agent revisits refer to double-checking or 
backtracking behavior, where the agent is immediately re-fixated after 
fixating on a different item. This metric does not represent the total time 
spent looking at the agent, as measured by the proportion of eye gaze 
metric.

Practically speaking, eye-tracking data can be used as input for AI 
teammates to adapt dynamically to human users, aligning with the 
concept of adaptive automation (Byrne & Parasuraman, 1996; Feigh 
et al., 2012; Inagaki, 2003; Kaber & Endsley, 2004; Parasuraman et al., 
2009; Scerbo, 2018). Prior studies have demonstrated that eye-gaze 
indicators of human errors can be used as triggers for automation 
assistance (Gartenberg et al., 2013; Ratwani et al., 2008; Ratwani & 
Trafton, 2011). Such input helps AI agents anticipate human behavior 
and re-prioritize tasks accordingly. Recent work by our group supports 
this approach, showing that models combining eye-tracking metrics 
with other human inputs better predict proficiency, trust, and intention 
than models using either input alone (Hulle et al., 2024).

This work demonstrates that eye-tracking metrics offer unobtrusive 
indicators of human-autonomy teaming and performance. Our findings 
suggest that gaze features could serve as triggers for adaptive agent 
behavior. For example, increased agent revisits may prompt the agent 
to simplify its actions or increase transparency (Mercado et al., 2016), 
while reduced blink count and scanpath length may signal high 
engagement, suggesting the agent could scale back its involvement. 
Conversely, broader scanpaths or gaze shifts away from the agent may 
reflect planning or declining situation awareness, prompting increased 
agent support. Together, these gaze-informed signals can inform 

dynamic adjustments in agent behavior to support key teaming con
structs such as trust, workload, awareness, and planning (Bolstad & 
Endsley, 2000; Demir et al., 2017; Gorman et al., 2017).

4.4. Limitations

Given our display size and game space, task relevant information was 
confined to a small portion of the available visual field. However, in 
many real-world situations, we naturally incorporate information from 
beyond this restricted area through combined eye and head movements. 
Prior research suggests that behavior changes when head movements 
are involved in acquiring peripheral, goal-relevant information (David 
et al., 2020; Draschkow et al., 2021; Solman & Kingstone, 2014) Spe
cifically, we tend to rely more on memory in situations that require large 
eye/head movements (Draschkow et al., 2021). Therefore, future 
research should evaluate how eye gaze metrics related to teammate 
performance monitoring and team coordination change when head 
movements are also necessary for monitoring and coordinating teaming 
behavior.

The observed teaming behavior in this context may have been spe
cific to the environments we chose to work with. However, there are 
many alternative configurations that could change teaming behavior in 
this task. For example, how may teaming behavior change with 
increased task complexity (e.g. multiple ingredients, player specific 
roles) or team composition (multiple humans or agents in the same 
environment)?

Eye tracking measures may indicate multiple human-autonomy 
teaming processes. For example, revisits might suggest a lack of trust 
in the agent, but they could also indicate strategic adaptation to the 
teammate’s behavior or support for back-up behavior (Salas et al., 
2005). Additionally, many of our measures are task-specific and require 
context to interpret the eye-tracking behavior accurately, such as 
knowing exactly what participants are looking at. To generalize these 
findings to other tasks, the information and conditions in the environ
ment are crucial. Other factors that may influence eye-tracking mea
sures include how the agent is represented (e.g., avatar, robot, more 
human-like interfaces) and the task environment (de Visser et al., 2016).

Lastly, the human teaming constructs of adaptability and perfor
mance monitoring are richer in their full realization and were only 
partially observed in this context. For example, the construct back-up 
behavior in its full definition is “the ability to anticipate other team 
member’s needs through accurate knowledge about their responsibilities. This 
includes the ability to shift workload among members to achieve balance 
during high periods of workload or pressure” (Salas et al., 2005, p. 560, 
Table 1). While we observed some anticipation by the human partici
pants of the AI’s responsibilities, shifting workload to achieve balance 
would be a more advanced teaming behavior that was not observed in 

Table 2 
Output from linear mixed effects model predicting agent trust as a function of 
navigational challenge, agent teammate behavior and proportion of eye gaze on 
the agent.

Fixed Effects Estimate Std. Error df t p

Intercept 6.21 0.09 302.11 68.03 <0.001
Nav Chal - High 0.11 0.13 1213.35 0.86 0.39

Nav Chal - Medium − 0.73 0.10 1196.91 − 6.99 <0.001
Agent - Clumsy − 3.85 0.09 1164.95 − 44.21 <0.001

Agent -Rigid − 0.50 0.08 1155.29 − 5.93 <0.001
Gaze on Agent − 0.04 0.01 1214.81 − 4.53 <0.001

Note. Nav Chal indicates navigational challenge. Std. Error indicates standard 
error. df indicates degrees of freedom. t-tests use Satterthwaites’s method.

Table 3 
Output from linear mixed-effects model predicting human task contribution 
from navigational challenge, agent teammate behavior, fixation revisits on 
agent, scanpath frequency, blink duration, total blinks, trust, and proportion of 
gaze on the human player.

Fixed Effects Estimate Std. Error df t p

Intercept 0.352 0.0442 767.49 7.97 <0.001
Nav Chal - High − 0.283 0.0140 1145.93 − 20.26 <0.001

Nav Chal - Medium − 0.096 0.0133 1148.93 − 7.19 <0.001
Agent - Clumsy 0.547 0.0171 1128.15 32.06 <0.001
Agent - Rigid 0.161 0.0103 1083.97 15.56 <0.001

Agent Fixation Revisits − 0.002 0.0011 1141.74 − 2.17 0.030
Scanpath Length − 0.026 0.0026 843.07 − 9.77 <0.001
Blink Duration 0.085 0.0539 1136.03 1.58 0.115

Blink Count − 0.002 0.0007 457.86 − 2.87 0.004
Trust − 0.015 0.0035 1148.67 − 4.13 <0.001

Gaze on Human 0.001 0.0005 958.90 1.38 0.167

Note. Nav Chal indicates navigational challenge. Std. Error indicates standard 
error. df indicates degrees of freedom. t-tests use Satterthwaites’s method.
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the current study. Future human-autonomy teaming may demonstrate 
this behavior in different type of environments requiring more inter
dependence and coordination and with AI agents that can communicate 
about task and teamwork.

5. Conclusion

This study demonstrates that AI agents designed with hierarchical 
reinforcement learning can significantly improve human-autonomy 
teaming by enhancing coordination, balancing task contributions, and 
fostering higher trust. Through dynamic teaming scenarios in Over
cooked AI, we identified specific eye-tracking metrics such as fixation 
revisits, blink count, scanpath length, and gaze allocation that reliably 
reflect changes in trust and predict human contributions to team per
formance. These results advance our understanding of how gaze 
behavior can serve as an unobtrusive indicator of teaming constructs 
related to trust calibration, workload, and situation awareness. Impor
tantly, this work is among the first to show that eye metrics can be used 
not only to assess but potentially to inform adaptive agent behavior. 
Together, these findings support the use of gaze-informed models as a 
foundation for developing more responsive, trustworthy, and effective 
human-autonomy teams.
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