roboskin.examples.calibration package¶
Submodules¶
roboskin.examples.calibration.analyze_method_robustness module¶
-
roboskin.examples.calibration.analyze_method_robustness.
initialize_optimizers_and_loggers
(args, robotic_configs, imu_mappings, datadir, evaluator)[source]¶
roboskin.examples.calibration.calibrate_imu_poses module¶
Module for Kinematics Estimation.
roboskin.examples.calibration.plot_data module¶
-
roboskin.examples.calibration.plot_data.
clean_data
(data)[source]¶ TO DO - this is hardcoded from ros_robotic_skin, will fix later yea….
-
roboskin.examples.calibration.plot_data.
estimate_acceleration_batch
(kinematic_chain, data: numpy.ndarray, rotate_joint: int, i_joint: int, i_su: int, inds: dict, method: str)[source]¶
-
roboskin.examples.calibration.plot_data.
hampel_filter_forloop
(input_series, window_size, n_sigmas=3)[source]¶ Implementation of Hampel Filter for outlier detection.
- Parameters
input_series (np.array) – The input data to use for outlier detection.
window_size (int) – The sliding window size to use for the filter on input_series.
n_sigmas (int) – The number of standard deviations to determine what data points are outliers.
-
roboskin.examples.calibration.plot_data.
is_first
(i)[source]¶ Returns whether it’s the first row/column
-
roboskin.examples.calibration.plot_data.
is_last
(i, n)[source]¶ Returns whether it’s the last row/column
-
roboskin.examples.calibration.plot_data.
low_pass_filter
(data, samp_freq, cutoff_freq=15.0)[source]¶ Implementation of the standard pass filter, also known as a exponential moving average filter.
- Parameters
data – data to be filtered.
samp_freq – sampling frequency of the data
cutoff_freq – cutoff frequency; that is, data that is > = cutoff_freq will be attentuated.
-
roboskin.examples.calibration.plot_data.
plot_in_one_graph
(y_dict: dict, ylabels: List[str], xlabel: str, title: str, x: Optional[numpy.ndarray] = None, show=True, save=False)[source]¶ Plot all y_dict data in 1 graph. Each y_dict data is assumed to be 2 dimension. Shape=(length, data)
- Parameters
x (np.ndarray) – x axis data
xlabel – Normally it’s Time [s] or No. Data Points
y_dict (dict) – Data stored in a dictionary. Keys are the names of the data. (Ex. Method names) Values include the actual data. This function mainly targets time series data y_dict[‘key’].shape = (length, data)
ylabels (List[str]) – Labels of the data
title (str) – Title
show (bool) – Show plot
save (bool) – Save plot
-
roboskin.examples.calibration.plot_data.
plot_side_by_side
(y_dict: dict, title: str, xlabel: str, x: Optional[numpy.ndarray] = None, ylabels: List[str] = ['ax', 'ay', 'az'], show=True, save=False)[source]¶ Plot data side by side: y1 on the left and y2 on the right
- Parameters
y1 (np.ndarray) – Data. This function mainly targets time series data Shape = (length, data)
y2 (np.ndarray) – Data. This function mainly targets time series data Shape = (length, data)
title1 (str) – Title of y1
title2 (str) – Title of y2
xlabel (str) – Normally, t’s Time [s] or No. Data Points
ylabels (List[str]) – Data’s label
show (bool) –
-
roboskin.examples.calibration.plot_data.
set_captions
(ax, xlabel, ylabels, title, ylims, i_row, n_row, n_col)[source]¶
-
roboskin.examples.calibration.plot_data.
verify_acceleration_estimate
(data, pose_names: List[str], joint_names: List[str], imu_names: List[str], robot_configs: dict, imu_mappings: dict)[source]¶
roboskin.examples.calibration.stats_generator module¶
The stats generator file will output the following stats: 1) A graph with SU’s euclidean distance between real and predicted points.
One legend will be Mittendorfer’s method and another will be ours
A table comparing the dh params individually of our method and the others
A table comparing the orientation differences between Mittendorfer’s method and ours
-
roboskin.examples.calibration.stats_generator.
add_table_to_md
(filename, table, headers)[source]¶ filename: str table: list headers: list
-
roboskin.examples.calibration.stats_generator.
append_true_parameters
(data_logger, robot_configs)[source]¶
-
roboskin.examples.calibration.stats_generator.
array_to_table_string
(dh_params_array)[source]¶ dh_params_array: np.ndarray
- Returns
- Return type
list
-
roboskin.examples.calibration.stats_generator.
create_cascaded_table
(method_names, data_loggers, target_measure, column_names, row_names)[source]¶ method_names: list data_loggers: list target_measure: str column_names: list row_names: list